RDM – Ossatures Manuel d'exercices

Yves Debard

Institut Universitaire de Technologie du Mans Département Génie Mécanique et Productique

http://iut.univ-lemans.fr/ydlogi/index.html

26 juin 2006 - 29 mars 2011

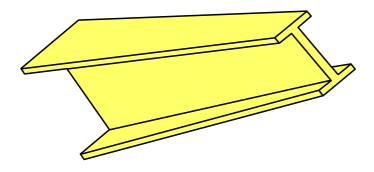


Table des matières

1	Exemples	1
	Exemple 1 : Portique plan	1
	Exemple 2 : Treillis plan à nœuds articulés	3
	Exemple 3: Anneau plan	5
	Exemple 4 : Plancher	8
	Exemple 5 : Ossature spatiale	10
	Exemple 6: Modes propres d'un anneau plan	12
	Exemple 7 : Ossature plane	14
2	Analyse statique	16
	E1 : Treillis plan à noeuds articulés	16
	E2 : Ossature plane	18
	E3 : Ossature plane	19
	E4 : Ossature plane	20
	E5 : Ossature plane	21
	E6 : Poutre droite	23
	E7 : Poutre courbe	24
	E8 : Ossature plane	25
	E9 : Poutre à section droite variable soumise à son poids propre	26
	E10 : Treillis spatial à nœuds articulés	27
	E11 : Portique plan – poutre soumise à une variation de température	29
	E12 : Treillis plan – poutre soumise à une variation de température	30
	E13 : Ossature plane – appui incliné	31
3	Sections droites : caractéristiques et contraintes	32
	S1 : Caractéristiques d'une section droite	32
	S2: Torsion d'une poutre rectangulaire	34
	S3 : Caractéristiques d'une section droite	35
	S4 : Caractéristiques d'une section droite	37
	S5 : Caractéristiques d'une section droite	39
	S6 : Caractéristiques d'une section droite	40
	S7 : Caractéristiques d'une section droite	41
	S8 : Caractéristiques d'une section droite	42
	S9 : Caractéristiques d'une section droite	43
	S10 : Contrainte normale dans une section droite : flexion déviée	45
	S11 : Contraintes dans une section droite : flexion-torsion	46
	S12 : Cisaillement du à l'effort tranchant	48
	S13 : Contrainte normale dans une poutre à section droite variable	49
	S14 : Contrainte normale dans une section droite : flexion déviée	50
	S15 : Section droite à parois minces	51
	S16 : Contraintes tangentielles dans un caisson multicellulaire	53

	S17 : Cisaillement dans un profil mince fermé et simplement cloisonné	55
	S18 : Flexion - torsion	57
	S19 : Contraintes normales dans une poutre à section droite variable	59
4	Flambement eulérien	60
	F1: Ossature plane	60
	F2 : Poutre droite	62
	F3 : Poutre droite à section variable	63
	F4: Poutre console – flexion-torsion	64
	F5 : Lame équerre – flexion-torsion	66
	F6: Lame équerre – flexion-torsion	68
	F7: Flambement d'un mât vertical sous son poids propre	71
	F8: Flambement d'une poutre droite	72
	F9 : Flambement d'un cadre	73
5	Modes propres	75
	D1 : Treillis plan à nœuds articulés	75
	D2 : Poutre droite à section variable	76
	D3 : Vibrations transversales d'une poutre droite bi-encastrée	77
	D4 : Portique plan	78
	D5 : Ossature spatiale	79
	D6 : Ossature plancher	80
	D7: Vibrations transversales d'une poutre droite libre	81
	D8 : Premier mode propre d'une poutre console avec masses	82
\mathbf{R}	éférences	83

Chapitre 1

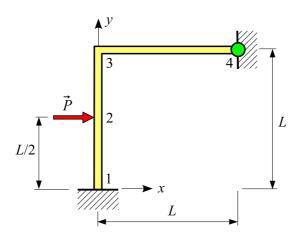
Exemples

Exemple 1 : Portique plan

Référence: A. Giet, L. Géminard, Résistance des matériaux, tome 2, 1968, pages 148-156.

Données:

La structure plane représentée sur la figure est constituée de deux poutres de même section droite.



Soient A l'aire des sections droites et I_Z leur moment quadratique par rapport à l'axe Z. L'ossature est encastrée en 1 et articulée en 4. Les poutres sont en acier de module de Young E.

Le nœud 2 porte une force de composantes (P, 0, 0).

L'énergie de déformation due à l'effort tranchant est négligée (modèle de Bernoulli).

On donne:

$$L=2~{
m m}$$
 $A=16~{
m cm}^2~~,~~I_Z=135~{
m cm}^4$ $E=200000~{
m MPa}$ $P=10000~{
m N}$

Modélisation et calcul:

Les étapes de la modélisation sont :

Fichier

Nouvelle étude

Définir le type de l'ossature

Ossature plane

Entrer les coordonnées des 4 nœuds : (0,0) (0,1) (0,2) (2,2)

Poutres

Créer des poutres définies par leurs nœuds extrémités : 1-2 , 2-3 , 3-4

Sections droites

Section droite quelconque

$$A = 16 \text{ cm}^2 , I_Z = 135 \text{ cm}^4$$

Liaisons

L'ossature est encastrée en 1 et articulée en 4

Cas de charges

Le nœud 2 porte une charge de composantes (10000, 0, 0) N.

Matériaux

Définir

Module de Young = 200000 MPa

Calculer

Paramètres

Modèle de Bernoulli

Calculer

Analyse statique

Enregistrer les données et lancer le calcul

Résultats

Exploiter les résultats du calcul

Résultats:

- Déplacements nodaux :

$$u_2=2.2144~{
m mm}$$
 , $v_2=-0.0017~{
m mm}$, $\theta_{2z}=-0.0388\,^\circ$
 $u_3=0.0245~{
m mm}$, $v_3=-0.0033~{
m mm}$, $\theta_{3z}=0.1510\,^\circ$
 $\theta_{4z}=-0.0754\,^\circ$

- Actions de liaison:

$$R_{1x} = -6077.4 \; {\rm N} \quad , \quad R_{1y} = 533.4 \; {\rm N} \quad , \quad M_{1z} = 3221.6 \; {\rm N.m}$$

$$R_{4x} = -3922.6 \; {\rm N} \quad , \quad R_{4y} = -533.4 \; {\rm N}$$

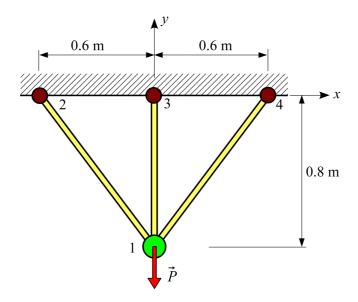
Remarque : dans la référence, l'énergie de déformation due à l'effort normal est négligée.

Exemple 2 : Treillis plan à nœuds articulés

Référence: A. Giet, L. Géminard, Problèmes de résistance des matériaux, tome 1, 1973, page 52.

Problème:

La structure représentée sur la figure est composée de trois barres articulées entre elles. L'ensemble est relié à l'extérieur par trois rotules en 2, 3 et 4.



Les trois barres ont la même section droite : carré plein de côté 10 mm.

Les poutres 1-2 et 1-4 sont en acier :

```
module de Young = 200000 MPa coefficient de dilatation = 11 \ 10^{-6} \ \mathrm{K}^{-1}
```

La poutre 1-3 est en laiton :

```
module de Young = 100000 \text{ MPa}
coefficient de dilatation = 18 \cdot 10^{-6} \text{ K}^{-1}
```

Le nœud 1 porte une charge \vec{P} de composantes (0, -10000, 0) N.

L'ossature subit une augmentation de température de 50 K.

Modélisation:

Les étapes de la modélisation sont :

Nouvelle étude

Définir le type de l'ossature : **Plane** Définir l'unité de longueur : m

Entrer les coordonnées des nœuds : (0, -0.8), (-0.6, 0), (0, 0), (0.6, 0)

Poutres

Créer des poutres définies par leur nœud origine et leur nœud extrémité

Relaxations

Les trois poutres sont du type rotule-rotule (liaisons intérieures)

Sections droites

Section droite paramétrée

Carré plein de côté 10 mm

Matériaux

Modifier la couleur courante

Attribuer la couleur courante à la poutre 1-3 (bouton **Élément**)

Entrer les caractéristiques de la poutre en laiton (bouton **Définir**)

module de Young = 100000 MPa , coefficient de dilatation = $18E-6~K^{-1}$

Entrer les caractéristiques des poutres en acier (bouton Définir)

module de Young = 200000 MPa, coefficient de dilatation = $11\text{E}-6 \text{ K}^{-1}$

Liaisons

L'ossature est articulée en 2 , 3 et 4

Cas de charges

Le nœud 1 porte une force de composantes (0, -10000, 0) N Variation de température = 50 K

Calculer

Analyse statique

Enregistrer les données et lancer le calcul

Résultats:

- Déplacement du nœud 1 :

$$u_1 = 0$$
 , $v_1 = -0.96$ mm

- Allongement des poutres :

$$\Delta_{1-2} = \Delta_{1-4} = 0.768 \text{ mm}$$
, $\Delta_{1-3} = 0.960 \text{ mm}$

- Efforts normaux :

$$N_{1-2} = N_{1-4} = 4370 \text{ N}$$
 , $N_{1-3} = 3008 \text{ N}$

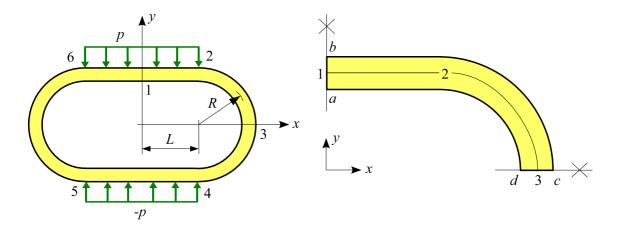
Remarque: pour extraire ces résultats, utiliser le bouton droit de la souris.

Exemple 3: Anneau plan

Référence : solution analytique.

Données:

L'anneau de plan moyen $\{O, xy\}$ et de section droite constante (carré plein de coté c) représenté sur la figure est réalisé en acier de module de Young E et de coefficient de Poisson ν .



Le tronçon 6-2 porte une force uniformément répartie d'intensité linéique (0, p, 0).

Le tronçon 5-4 porte une force uniformément répartie d'intensité linéique (0,-p,0).

L'énergie de déformation due à l'effort tranchant est prise en compte (modèle de **Timoshenko**).

On donne:

$$E=200000~\mathrm{MPa}$$
 , $\nu=0.3$

$$c=10~\mathrm{mm}$$
 , $L=R=50~\mathrm{mm}$

$$p = -10 \text{ N/mm}$$

Modélisation:

Le problème présente une symétrie par rapport aux plans x=0 et y=0. Il suffit de modéliser le quart de l'anneau.

Les étapes de la modélisation sont :

Fichier

Bibliothèque

La géométrie existe dans la bibliothèque d'ossatures paramétrées

Ossature plane

Numéro 31 : $R=50~\mathrm{mm}$, $L=50~\mathrm{mm}$, l'arc est discrétisé en 20 éléments

Matériau

Définir

$$E = 200000 \; \text{MPa} \;, \; \nu = 0.3$$

Sections droites

Section droite paramétrée

Carré plein de côté $c=10~\mathrm{mm}$

Liaisons/Symétries

La structure est symétrique par rapport au plan x = 0: désigner le nœud 1 La structure est symétrique par rapport au plan y = 0: désigner le nœud 3

Cas de charges

La poutre 1-2 une force uniformément répartie d'intensité (0,-10,0) N/mm

Calculer

Paramètres

Modèle de Timoshenko

Calculer

Analyse statique

Enregistrer les données et lancer le calcul

Résultats:

Référence:

- Déplacements :

$$v_1 = \frac{(6\pi^2 + 17\pi - 6)pR^4}{24(2+\pi)EI_z} + \frac{\pi pR^2}{4EA} + \frac{(2+\pi)pR^2}{4GAk_y}$$

$$= -0.324026 - 0.000982 - 0.005013 = -0.330021 \text{ mm}$$

$$u_3 = \frac{(\pi - 14)pR^4}{6(2+\pi)EI_z} + \frac{pR^2}{2EA} - \frac{pR^2}{2GAk_y}$$

$$= 0.131992 - 0.000625 + 0.001950 = 0.133317 \text{ mm}$$

- Actions de liaisons :

$$F_{1x}=0$$
 , $M_{1z}=\frac{(14+3\pi)\,pR^2}{6\,(2+\pi)}=-18983~\mathrm{N.mm}$ $F_{3y}=-pR=500~\mathrm{N}$, $M_{3z}=\frac{(2+3\pi)\,pR^2}{3\,(2+\pi)}=-18567~\mathrm{N.mm}$

- Moment fléchissant dans la section 2

$$Mf_{z2} = -\frac{4pR^2}{3(2+\pi)} = 6483 \text{ N.mm}$$

- Contraintes normales :

$$\begin{cases} \sigma_a \\ \sigma_b \end{cases} = \mp \frac{(14+3\,\pi)\,pR^2}{(2+\pi)\,c^3} = \pm 113.90 \text{ MPa}$$

$$\begin{cases} \sigma_c \\ \sigma_d \end{cases} = \frac{pR}{c^2} \mp \frac{2\,(2+3\,\pi)\,pR^2}{(2+\pi)\,c^3} = \begin{cases} 106.10 \\ -116.10 \end{cases} \text{ MPa}$$

Solution éléments finis :

- Déplacements :

$$v_1 = -0.329765 \text{ mm}$$
 , $u_3 = 0.133290 \text{ mm}$

- Actions de liaison :

$$F_{1x} = 0 \text{ N}$$
 , $M_{1z} = -18977 \text{ N.mm}$, $F_{3y} = 500 \text{ N}$, $M_{3z} = -18523 \text{ N.mm}$

- Moment fléchissant dans la section 2 : $Mf_{z2} = 6477 \text{ N.mm}$
- Contraintes normales :

$$\sigma_a = 113.86 \text{ MPa} \quad , \quad \sigma_b = -113.86 \text{ MPa} \quad , \quad \sigma_c = 106.14 \text{ MPa} \quad , \quad \sigma_d = -116.14 \text{ MPa}$$

Remarque:

Avec le module RDM – Éléments finis (hypothèse contraintes planes, 600 triangles à 6 nœuds), on obtient :

$$v_1 = -0.328065 \text{ mm}$$
 $u_3 = 0.133370 \text{ mm}$

$$\sigma_a = 113.96 \text{ MPa} \quad , \quad \sigma_b = -113.96 \text{ MPa} \quad , \quad \sigma_c = 99.66 \text{ MPa} \quad , \quad \sigma_d = -124.20 \text{ MPa}$$

La théorie des poutres courbes [3] donne :

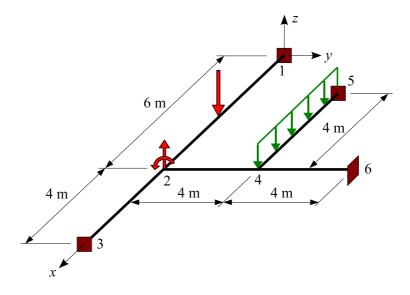
$$\sigma_c = 99.10 \text{ MPa}$$
 , $\sigma_d = -124.00 \text{ MPa}$

Exemple 4: Plancher

Référence : W. Weawer, J. Gere, *Matrix analysis of framed structures*, Van Nostrand Reihnold, 1990, pages 342-345.

Problème:

L'ossature plancher représentée sur la figure est constituée de cinq poutres de même section droite.



Les sections 1, 3, 5 et 6 sont encastrées.

Le nœud 2 porte une force de composantes (0, 0, 50) kN et un couple de comosantes (0, 100, 0) kN.m.

La poutre 1-2 porte en son milieu une force ponctuelle de composantes (0,0,-150) kN.

La poutre (5-4) porte sur toute sa longueur une charge uniformément répartie d'intensité linéique (0,0,-75) kN/m.

L'énergie de déformation due à l'effort tranchant est négligée (modèle de Bernoulli).

On donne:

```
L=2~\rm m module de Young = 200000 MPa , coefficient de Poisson = 0.25 aire = 10^2~\rm cm^2 , constante de torsion de Saint Venant J=2~10^5~\rm cm^4 , I_Z=10^5~\rm cm^4 P=5000~\rm daN
```

Modélisation et calcul:

Les étapes de la modélisation sont :

Nouvelle étude

Définir le type de l'ossature : Plancher

Entrer les coordonnées des nœuds

Poutres

Créer des poutres définies par leur nœud origine et leur nœud extrémité

Sections droites

Section quelconque

 $Aire = 100 \text{ cm}^2$

Constante de torsion de Saint Venant : $J = 2E5 \text{ cm}^4$

Moment quadratique : $I_Z = 1E5 \text{ cm}^4$

Liaisons

L'ossature est encastrée en 1, 3, 5 et 6

Cas de charges

Le nœud 2 porte une force $F_z = 50 \text{ kN}$

Le nœud 2 porte un couple $M_y = 100$ kN.m

La poutre 1-2 porte une force ponctuelle $F_z=-150$ kN située à 3 m du nœud origine

La poutre 5-4 porte une force uniformément répartie $f_z=-75~\mathrm{kN/m}$

Matériau

Définir

Module de Young = 200000 MPa, coefficient de Poisson = 0.25

Calculer

Analyse statique

Enregistrer les données et lancer le calcul

Résultats:

- Déplacements nodaux :

$$w_2 = -1.2182 \text{ mm}$$
 , $\theta_{2x} = -0.35599 \ 10^{-3} \text{ rad}$, $\theta_{2y} = -0.14976 \ 10^{-3} \text{ rad}$ $w_4 = -2.0993 \text{ mm}$, $\theta_{4x} = 0.28856 \ 10^{-3} \text{ rad}$, $\theta_{4y} = 0.18376 \ 10^{-3} \text{ rad}$

- Actions de liaison:

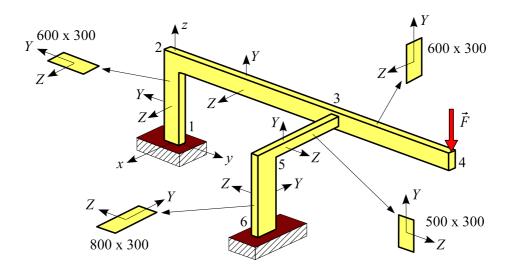
$$\begin{split} F_{1z} &= 93.528 \text{ kN} \quad , \quad M_{1x} = 9.493 \text{ kN.m} \quad , \quad M_{1y} = -163.092 \text{ kN.m} \\ F_{3z} &= 34.452 \text{ kN} \quad , \quad M_{3x} = 14.240 \text{ kN.m} \quad , \quad M_{3y} = 76.393 \text{ kN.m} \\ F_{5z} &= 214.940 \text{ kN} \quad , \quad M_{5x} = -11.543 \text{ kN.m} \quad , \quad M_{5y} = -239.068 \text{ kN.m} \\ F_{6z} &= 57.080 \text{ kN} \quad , \quad M_{6x} = -128.588 \text{ kN.m} \quad , \quad M_{6y} = -7.351 \text{ kN.m} \end{split}$$

Exemple 5 : Ossature spatiale

Référence : J.-J. BARRAU, S. LAROZE, Calcul de structures par éléments finis, ENSAE, 1984.

Problème:

L'ossature spatiale représentée sur la figure est constituée de poutres dont les sections droites sont des rectangles pleins.



Les coordonnées nodales sont :

nœud	x (m)	y (m)	z (m)
1	0	0	0
2	0	0	4
3	0	8	4
4	0	11	4
5	3	8	4
6	3	8	0

Les caractéristiques élastiques du matériau sont : E=100000 MPa et $\nu=0.2987$.

L'énergie de déformation due à l'effort tranchant est prise en compte (modèle de **Timoshenko**).

Les sections 1 et 6 sont encastrées.

Le nœud 4 porte une force \vec{F} de composantes (0,0,-1000) daN .

Modélisation et calcul:

Les étapes de la modélisation sont :

Nouvelle étude

Définir le type de l'ossature : Spatiale

Définir l'unité de longueur : m Entrer les coordonnées des nœuds

Poutres

Les poutres sont définies par leur nœud origine et leur nœud extrémité

Matériaux

Module de Young = 100000 MPa, coefficient de Poisson = 0.2987

Sections droites

Changer les poutres 3-5 et 5-6 de groupe

Paramétrée

Désigner la poutre 2-3

Rectangle plein : $600 \times 300 \text{ mm}$

Paramétrée

Désigner la poutre 3-5

Rectangle plein : $500 \times 300 \text{ mm}$

Paramétrée

Désigner la poutre 5-6

Rectangle plein : $800 \times 300 \text{ mm}$

Repère local

Modifier le repère local de la poutre 1-2 (angle = 90°)

Liaisons

L'ossature est encastrée en 1 et 6

Cas de charges

Le nœud 4 porte une charge de composantes (0, 0, -1000) daN

Calculer

Paramètres du calcul

Modèle de Timoshenko

Calculer

Analyse statique

Enregistrer les données et lancer le calcul

Résultats:

Moments aux extrémités des poutres (en daN.m)

élément		M_{to}	Mf_{Yo}	Mf_{Zo}	M_{te}	Mf_{Ye}	Mf_{Ze}
1 - 2	Référence	-6	271.2	-389.6	-6	322	-104.7
	RDM – Ossatures	-5.6	271.5	-389.7	-5.64	322.8	-101.2
2 - 3	Référence	322.2	-6	-104.7	-322.2	96.6	-2513
	RDM – Ossatures	-322.8	-5.6	-101.2	-323.1	97.04	-2511
3 - 4	Référence	0	0	-3000	0	0	0
	RDM – Ossatures	0	0	-3000	0	0	0
3 - 5	Référence	487.2	322.2	-96.6	487.2	-3581	117.1
	RDM – Ossatures	488.6	322.8	-97.04	488.6	-3581	119.4
5 - 6	Référence	117.1	-3581	-487.2	117.1	-3632	-202
	RDM – Ossatures	119.4	-3581	-488.6	119.5	-3632	-200.1

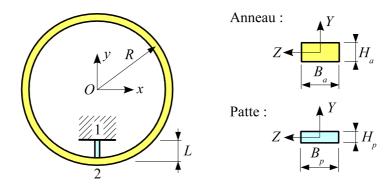
12 RDM – Ossatures

Exemple 6: Modes propres d'un anneau plan

Référence : Guide de validation des progiciels de calcul de structures, AFNOR, 1990, page 208.

Problème:

L'ossature plane représentée sur la figure est constituée d'un anneau (centre O, rayon moyen R) et d'une patte 1-2 de longueur L. L'ensemble est encastré en 1.



L'anneau et la patte ont des sections droites rectangulaires pleines.

Soient E le module de Young du matériau et ρ sa masse volumique.

On recherche les six premiers modes propres de cet anneau.

L'énergie de déformation due à l'effort tranchant est négligée (modèle de Bernoulli).

On donne:

$$R = 0.1 \text{ m}$$
 , $L = 0.0275 \text{ m}$

$$E = 72000 \text{ MPa}$$
 , $\rho = 2700 \text{ kg/m}^3$

Section droite de l'anneau : $H_a = 5 \text{ mm}$, $B_a = 10 \text{ mm}$

Section droite de la patte : $H_p = 3 \text{ mm}$, $B_p = 10 \text{ mm}$

Modélisation:

Les étapes de la modélisation sont :

Bibliothèque (une partie de la géométrie existe dans la bibliothèque d'ossatures paramétrées)

Définir le type d'ossature : Plane

Entrer le numéro de l'ossature paramétrée : 30

Rayon = 0.1 m, angles : 0 et 360 degrés, le cercle est discrétisé en 60 éléments

Poutres (création de la patte)

Ajouter une poutre verticale

Origine : nœud 1 , longueur = 0.0275 m

Matériau

Module de Young = 72000 MPaMasse volumique = 2700 kg/m^3

Sections droites

Changer la patte de groupe de section

Paramétrée

Désigner l'anneau

Rectangle plein : $5 \times 10 \text{ mm}$

Paramétrée

Désigner la patte

Rectangle plein : $3 \times 10 \text{ mm}$

Liaisons

La patte est encastrée en 1

Poutres

Discrétiser la patte en 6 éléments

Calculer

Modes propres

6 premiers modes propres

Enregistrer les données et lancer le calcul

Résultats:

Fréquences en Hz:

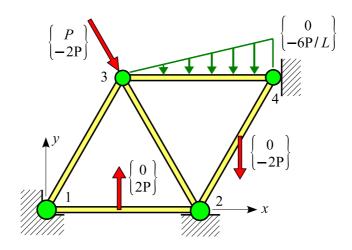
Mode	Référence	RDM – Ossatures
1	28.8	28.81
2	189.3	189.30
3	268.8	268.60
4	641.0	640.52
5	682.0	681.65
6	1063.0	1062.70

Exemple 7 : Ossature plane

Référence : W. Weawer, J. Gere, *Matrix analysis of framed structures*, Van Nostrand Reihnold, 1990, page 283.

Données:

L'ossature plane représentée sur la figure est constituée de cinq poutres droites identiques articulées entre elles.



Les caractéristiques de ces poutres sont :

Module de Young : E

Longueur : L

Aire de la section droite A

Les nœuds 1 et 2 sont articulés et le nœud 4 repose sur un appui simple $(u_4 = 0)$.

Le nœud 3 porte une force (P, -2P).

La poutre 1-2 porte en son milieu une force de composantes (0,2P).

La poutre 2-4 porte en son milieu une force de composantes (0, -2P).

La poutre 3-4 porte sur toute sa longueur une charge triangulaire dont l'intensité à l'extrémité 4 a pour composantes (0, -6P/L).

L'énergie de déformation due à l'effort tranchant est négligée (modèle de Bernoulli).

On donne:

```
L=1.5~\rm mmodule de Young = 200000 MPa section droite paramétrée : carré creux, côté extérieur c=100~\rm mm , t=5~\rm mm P=1000~\rm daN
```

Modélisation:

Les étapes de la modélisation sont :

Fichier

Nouvelle étude

Définir le type de l'ossature : Plane

Entrer les coordonnées des nœuds 1 et 2 : 0,0, 1.5,0

Nœuds

Créer un nœud défini par un nœud de référence et ses coordonnées polaires :

nœud 3 : nœud de référence = 1 , coordonnées = $(60\,^{\circ}$, 1.5 m)

nœud 4 : nœud de référence = 2 , coordonnées = $(60^{\circ}, 1.5 \text{ m})$

Afficher \Rightarrow Échelle maximale

Poutres

Créer des poutres définies par leur nœud origine et leur nœud extrémité

Relaxations

Toutes les poutres sont du type rotule-rotule

Sections droites

Bibliothèque

Carré creux de côté 100 mm et d'épaisseur 5 mm

Liaisons

L'ossature est articulée en 1 et 2

L'ossature repose sur un appui simple (u = 0) en 4

Charges

Le nœud 3 porte une force de composantes (1000, -2000) daN

La poutre 1-2 porte en son milieu une force de composantes (0,2000) daN

La poutre 3-4 porte sur toute sa longueur une charge triangulaire dont l'intensité en 4 est égale à $(0-4000)~\mathrm{daN/m}$

La poutre 2-4 porte en son milieu une force de composantes (0, -2000) daN

Matériau

Définir

Module de Young = 200000 MPa

Calculer

Analyse statique

Enregistrer les données et lancer le calcul

Résultats:

- Déplacements nodaux :

$$u_3 = 0.02632 \text{ mm}$$
 , $v_3 = -0.07895 \text{ mm}$, $v_4 = -0.15789 \text{ mm}$

- Actions de liaison :

$$R_{1x} = 699 \text{ daN} \quad , \quad R_{1y} = 211 \text{ daN}$$
 $R_{2x} = 699 \text{ daN} \quad , \quad R_{2y} = 4789 \text{ daN}$ $R_{4x} = -2398 \text{ daN}$

– Efforts intérieurs sur la poutre 3-4:

$$N_3 = N_4 = -667 \text{ daN}$$
 , $T_{Y3} = -1000 \text{ daN}$, $T_{Y4} = 2000 \text{ daN}$

Chapitre 2

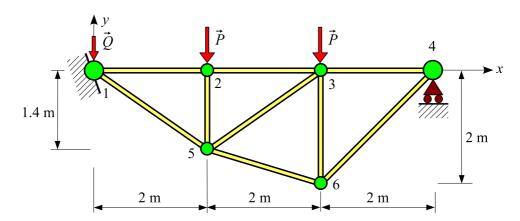
Analyse statique

E1: Treillis plan à noeuds articulés

Référence: F. Frey – Analyse des structures et milieux continus, Presses Polytechniques et Universitaires Romandes, 1985, page 108.

Problème:

L'ossature plane représentée sur la figure est constituée de 9 poutres droites articulées entre elles. L'ensemble est lié à l'extérieur par un appui simple en 4 et une rotule en 1.



La structure est en acier de module de Young E = 210000 MPa.

Les poutres sont des carrés creux de côté 70 mm et d'épaisseur 5 mm (bibliothèque).

Le nœud 1 porte une force :

$$\{Q\} = \begin{cases} 0\\ -1800 \end{cases} \text{ daN}$$

Les nœuds 2 et 3 portent une force :

$$\{P\} = \begin{cases} 0\\ -3600 \end{cases} \text{ daN}$$

Résultats:

Actions de liaison:

$$R_{1x} = 0 \quad , \quad R_{1y} = 5400 \text{ daN}$$

$$R_{4y} = 3600 \text{ daN}$$

Efforts normaux:

$$N_{12} = N_{23} = -5143 \text{ daN}$$

 $N_{34}=-3600~\mathrm{daN}$

 $N_{15} = 6278 \text{ daN}$

 $N_{56}=3758~\mathrm{daN}$

 $N_{64}=5091~\mathrm{daN}$

 $N_{25} = -3600 \ {\rm daN}$

 $N_{53}=1883~\mathrm{daN}$

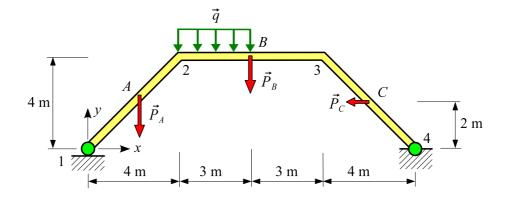
 $N_{63} = -4680 \text{ daN}$

E2: Ossature plane

Référence: A. Jalil – Calcul pratique des structures, Eyrolles, 1985, page 55.

Problème:

L'ossature plane représentée sur la figure est constituée de 3 poutres droites soudées entre elles. L'ensemble est lié à l'extérieur par un appui simple en 1 et une articulation en 4.



La structure est en acier.

Les trois poutres sont des HEA 600.

La poutre 1-2 porte en son milieu A une force : $\vec{P}_A = (0, -2000)$ daN.

La poutre 3 – 4 porte en son milieu C une force : $\vec{P}_C = (-1000, 0)$ daN.

La poutre 2-3 porte en son milieu B une force : $\vec{P}_B=(0,-2000)$ daN et sur le tronçon 2-B une charge uniformément répartie $\vec{q}=(0,-1000)$ daN/m.

L'énergie de déformation due à l'effort tranchant est négligée (modèle de Bernoulli).

Résultats:

Les actions de liaison sont :

$$\vec{R}_1 = \left\{ \begin{matrix} 0 \\ 4679 \end{matrix} \right\} \text{ daN}$$

$$\vec{R}_4 = \begin{cases} 1000 \\ 2321 \end{cases} \text{ daN}$$

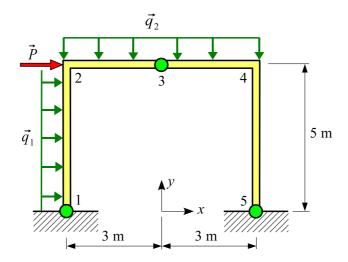
Le moment fléchissant maximal est égal à 18301 da N.m et situé sur la poutre 2-3 à X=2.66 m.

E3: Ossature plane

Référence: A. Jalil – Calcul pratique des structures, Eyrolles, 1985, page 57.

Problème:

L'ossature plane représentée sur la figure est constituée de quatre poutres droites. L'ensemble est lié à l'extérieur par deux rotules en 1 et 5. Les poutres 2-3 et 3-4 sont liées entre elles par une rotule.



La structure est en acier.

Les quatre poutres sont des HEA 600.

Le noeud 2 porte une force $\vec{P} = \begin{Bmatrix} 4000 \\ 0 \end{Bmatrix}$ daN.

La poutre 1-2 porte une charge uniformément répartie $\vec{q}_1 = \begin{Bmatrix} 1000 \\ 0 \end{Bmatrix}$ daN/m.

Les poutres 2-3 et 3-4 portent une charge uniformément répartie $\vec{q}_2 = \begin{cases} 0 \\ -5000 \end{cases}$ daN/m.

L'énergie de déformation due à l'effort tranchant est négligée (modèle de Bernoulli).

Résultats:

Les actions de liaison sont :

$$\vec{R}_1 = \begin{cases} -1250\\ 9583 \end{cases} \text{ daN}$$

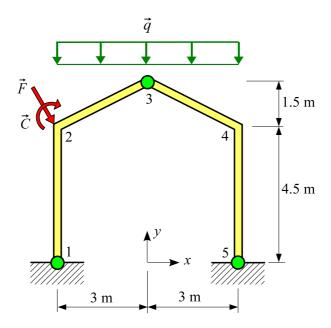
$$\vec{R}_5 = \begin{cases} -7750 \\ 20417 \end{cases} \text{ daN}$$

Le moment fléchissant est maximal en 4 et $Mf_{\text{max}} = 38750 \text{ daN.m}$

E4: Ossature plane

Référence : A. Jalil – Calcul pratique des structures, Eyrolles, 1985, page 6.

Problème : l'ossature plane représentée sur la figure est constituée de quatre poutres droites. L'ensemble est lié à l'extérieur par deux articulations en 1 et 5. Les poutres 2-3 et 3-4 sont liées entre elles par une rotule.



La structure est en acier de module de Young 210000 MPa.

Les quatre poutres sont des HEA 600.

Le noeud 2 porte une force $\vec{F}=(2000,-5000,0)$ daN et un couple $\vec{C}=(0,0,-3000)$ daN.m

Les poutres 2-3 et 3-4 portent une charge uniformément répartie $\vec{q}=(0,-1000,0)$ daN/m projeté.

L'énergie de déformation due à l'effort tranchant est négligée (modèle de **Bernoulli**).

Résultats:

Actions de liaison:

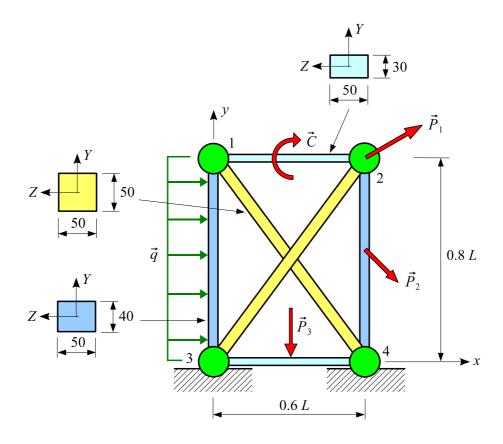
$$\vec{R}_1 = \begin{cases} -250 \\ 6000 \\ 0 \end{cases} \text{ daN } , \quad \vec{R}_5 = \begin{cases} -1750 \\ 5000 \\ 0 \end{cases} \text{ daN }$$

E5: Ossature plane

Référence: W. Weawer, J. Gere – Matrix analysis of framed structures, Van Nostrand Reihnold, 1990, page 228.

Problème:

L'ossature plane représentée sur la figure est constituée de six poutres droites articulées entre elles. L'ensemble est lié à l'extérieur par deux articulations en 3 et 4.



L'ossature est en acier de module de Young E.

Les caractéristiques des poutres sont :

- poutres 1 4 et 3 2 : aire = A
- poutres 1 2 et 3 4: aire = 0.6 A
- poutres 3 1 et 4 2 : aire = 0.8 A

La structure porte les charges suivantes :

- le noeud 2 porte une force \vec{P}_1 de composantes (2P,P,0). la poutre 2-4 porte en son milieu une force \vec{P}_2 de composantes (P,-P,0).
- la poutre 1-2 porte en son milieu un couple \vec{C} de composantes $(0,0,-1.2\,PL)$.
- la poutre 3-1 porte sur toute sa longueur une charge uniformément répartie. La charge par unité de longueur \vec{q} a pour composantes : (2.5 P/L, 0, 0).
- la poutre 3 4 porte en son milieu une force \vec{P}_3 de composantes (0, -2P, 0).

L'énergie de déformation due à l'effort tranchant est négligée (modèle de Bernoulli).

Données numériques :

module de Young : E = 200000 MPa

$$L = 1.25 \text{ m}$$

poutres 1-4 et 3-2 : carré plein de côté $50~\mathrm{mm}$

poutres 3-1 et 4-2: rectangle plein de dimensions 40×50 mm

poutres 1-2 et 3-4: rectangle plein de dimensions 30×50 mm

$$P = 1000 \text{ N}$$

Résultats:

Déplacements :

Actions de liaison:

$$\vec{R}_3 = \begin{cases} -2890 \\ -5667 \end{cases} \text{ N } , \quad \vec{R}_4 = \begin{cases} -2110 \\ 7667 \end{cases} \text{ N}$$

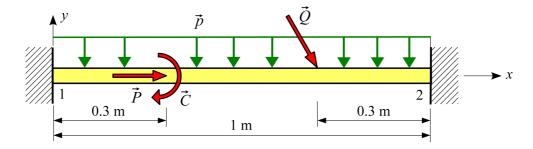
Efforts aux extrémités des poutres (en N) :

poutre	N à l'origine	T_Y à l'origine	N à l'extrémité	T_Y à l'extrémité	
1-2	610	2000	610	2000	
3-4	0	-1000	0	1000	
3 - 1	4147	- 1000	4147	1000	
4 - 2	-4520	- 500	-3520	500	
1 - 4	-2683	0	-2683	0	
3 - 2	3150	0	3150	0	

E6: Poutre droite

Référence : Guide de validation des progiciels de calcul de structures, AFNOR, 1990, page 20.

 $\mathbf{Problème}$: la poutre droite d'axe x représentée sur la figure est encastrée à ses deux extrémités.



Les caractéristiques de la section droite sont :

aire =
$$10^{-3}~\mathrm{m}^2$$
 , $I_Z = 1.7~10^{-8}~\mathrm{m}^4$

Le module de Young est $E=2.1\ 10^{11}$ Pa.

Elle porte:

– sur toute sa longueur une force uniformément répartie $\vec{p} = \begin{cases} 0 \\ -24000 \\ 0 \end{cases}$ N/m.

– au point d'abscisse x=0.3 m une force $\vec{P}= \left\{ \begin{matrix} 30000\\0\\0 \end{matrix} \right\}$ N et un couple $\vec{C}= \left\{ \begin{matrix} 0\\0\\-3000 \end{matrix} \right\}$ N.m.

– au point d'abscisse x=0.7 m une force $\vec{Q}=\left\{ egin{array}{c} 10000 \\ -20000 \\ 0 \end{array} \right\}$ N.

L'énergie de déformation due à l'effort tranchant est négligée (modèle de Bernoulli).

Résultats:

Action de liaison : $R_{Ax} = -24000 \text{ N}$

Déplacement : $v (x = 0.5 \text{ m}) = -4.90 \text{ } 10^{-2} \text{ m}$

Forces intérieures : T_Y (x=0.5 m)=-540 N , Mf_Z (x=0.5 m)=2800 N.m

E7: Poutre courbe

Référence : Solution analytique.

Problème:

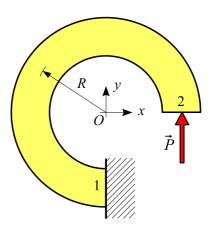
L'ossature plane représentée sur la figure est constituée d'une poutre courbe 1-2 de centre O et de rayon moyen R. La section droite est un carré plein de côté c. La poutre est encastrée en 1.

Elle porte en 1 une force de composante (0, P, 0).

Les caractéristiques élastiques du matériau sont E et ν .

On donne:

$$R=60~\mathrm{mm}$$
 , $c=30$
$$E=210000~\mathrm{MPa}$$
 , $\nu=0.28$
$$P=6000~\mathrm{N}.$$



L'énergie de déformation due à l'effort tranchant est prise en compte (modèle de **Timoshenko**).

Modélisation:

Ossature paramétrée 30 (20 éléments, rayon = 60 mm, angle de départ = 0° , angle de l'arc = 270°).

Résultats:

Le déplacement vertical du point 2 est :

$$v_2 = \underbrace{\frac{3\,\pi PR}{4\,EA}}_{\text{effort normal}} + \underbrace{\left(\frac{9\,\pi}{4} + 2\right)\frac{PR^3}{EI_Z}}_{\text{moment fl\'echissant}} + \underbrace{\frac{3\,\pi PR}{4\,GA\,k_Z}}_{\text{effort tranchant}} = 0.0045 + 0.8291 + 0.0138 \text{ mm}$$

où A est l'aire de la section droite et I_Z son moment quadratique par rapport à Z. $G = \frac{E}{2(1+\nu)}$ est le module d'élasticité transversal. Le dernier terme représente l'influence du cisaillement transverse.

 $k_Z = 5/6$ est le coefficient d'aire cisaillée.

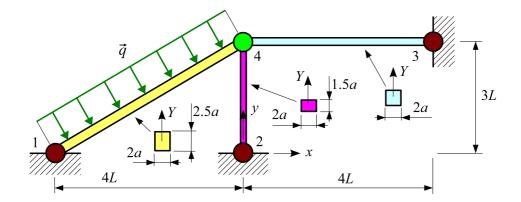
On obtient pour v_2 (en mm):

nombre d'éléments	Timoshenko	Bernoulli
10	0.8285	0.8148
20	0.8426	0.8289
40	0.8462	0.8324
référence	0.8474	0.8336

E8: Ossature plane

Référence : solution analytique.

Problème : l'ossature plane représentée sur la figure est constituée de trois poutres droites articulées entre elles.



Elle est en acier de module de Young E L'ensemble est lié à l'extérieur par trois articulations en 1 et 2 et 3.

Les caractéristiques des poutres sont :

poutre 1-4: rectangle plein $2.5 a \times 2 a$

poutre 2-4: rectangle plein $1.5 a \times 2 a$

poutre 3-4 : carré plein de côté 2a

La poutre 1-4 porte une charge d'intensité linéique \vec{q} qui lui est perpendiculaire.

L'énergie de déformation due à l'effort tranchant est négligée (modèle de Bernoulli).

On donne:

$$L=10~\mathrm{cm}$$
 , $E=200000~\mathrm{MPa}$, $a=10~\mathrm{mm}$, $q=8~\mathrm{N/mm}$

Résultats:

Déplacements :

$$u_4 = \frac{3 q L^2}{2 E a^2} = 6 \, 10^{-3} \text{ mm} \quad , \quad v_4 = -\frac{2 q L^2}{E a^2} = -8 \, 10^{-3} \text{ mm}$$

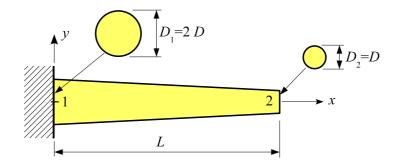
Efforts normaux:

$$N_{1-4} = 0$$
 , $N_{2-4} = -2 q L = -1600 \text{ N}$, $N_{4-3} = -\frac{3}{2} q L = -1200 \text{ N}$

E9: Poutre à section droite variable soumise à son poids propre

Référence : solution analytique.

 $\mathbf{Problème}$: la poutre droite de longueur L représentée sur la figure est encastrée en 1.



Soient E et ρ respectivement le module de Young et la masse volumique du matériau. La section droite est un rond plein dont le diamètre varie linéairement entre les sections 1 et 2. La poutre est soumise son poids propre. Soit g l'accélération de la pesanteur.

On donne:

$$E = 200000 \text{ MPa}$$
, $\rho = 8000 \text{ kg/m}^3$

$$g = 10 \text{ m/s}^2$$

$$L=1.2~\mathrm{m}$$
 , $D=50~\mathrm{mm}$

Calculer le déplacement vertical et la rotation de la section 2.

Résultats:

- Flèche en 2 :
 - Modèle de Bernoulli :

$$v_2 = -\frac{\rho g L^4}{3 E D^2} = -0.1105920 \text{ mm}$$

- Modèle de Timoshenko :

$$v_2 = -\frac{\rho g L^4}{3 E D^2} - \frac{2(1+\nu) L^2 \rho g}{3 E ky} = -0.1105920 - 0.0005824 = -0.1111744 \text{ mm}$$

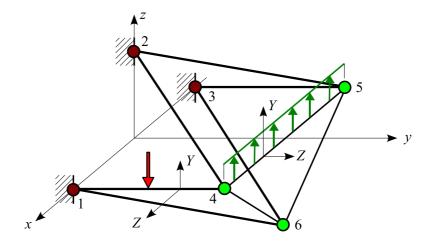
- Rotation de la section 2 :

$$\theta_{2z} = -\frac{\rho g L^3}{2 E D^2} = -0.0079206^{\circ}$$

E10 : Treillis spatial à nœuds articulés

Référence: W. Weawer, J. Gere – *Matrix analysis of framed structures*, Van Nostrand Reihnold, 1990, page 352.

Problème : la structure représentée sur la figure ci-dessous est constituée de 9 poutres articulées entre elles.



Les coordonnées des nœuds sont (en m) :

noeud	1	2	3	4	5	6
x	3	0	-3	3	-3	0
y	0	0	0	5	5	5
z	0	3	0	0	0	-3

Soient E=80000 MPa et $\nu=0.3$ les caractéristiques élastiques du matériau.

Les caractéristiques (section quelconque) des poutres sont :

$$4-5$$
, $4-6$ et $5-6$: $A=100$ cm², $J=I_Y=I_Z=10000$ cm⁴
$$1-4$$
, $1-6$, $3-5$, $3-6$, $2-4$ et $2-5$: $A=200$ cm², $J=I_Y=I_Z=20000$ cm⁴

L'ensemble est fixé au mur par 3 rotules en 1, 2 et 3.

Le nœud 6 porte une force de composantes (48,24,-24) kN. La poutre 1-4 porte en son milieu une force de composantes (0,0,-24) kN. La poutre 4-5 porte sur toute sa longueur une force uniformément répartie d'intensité linéique (0,0,24) kN/m.

28 RDM – Ossatures

Résultats :

Déplacements nodaux :

nœud 4 : (0.44359, 0.30312, 2.08842) mm

nœud 5:(0.02059,0.33437,1.79382) mm

nœud 6 : (0.41121, 1.34562, 2.10171) mm

Actions de liaison:

nœud 1 : (-13.8, -74, -1.8) kN

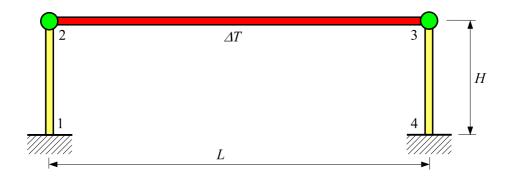
nœud 2 : (-6, 204, -122.4) kN

nœud 3 : (-28.2, -154, 28.2 kN)

E11 : Portique plan – poutre soumise à une variation de température

Référence : solution analytique.

Problème : la structure plane représentée sur la figure est constituée de 3 poutres de même matériau et de même section droite (rond creux de diamètre extérieur d et d'épaisseur t).



La poutre 2-3 est articulée en 2 et 3. L'ensemble est encastré en 1 et 4. Soient E et α respectivement le module de Young et le coefficient de dilatation du matériau.

La poutre 2-3 subit une variation de température égale à ΔT .

L'énergie de déformation due à l'effort tranchant est négligée (modèle de Bernoulli).

On donne:

$$L=1~\mathrm{m}$$
 , $H=0.3~\mathrm{m}$, $d=80~\mathrm{mm}$, $t=5~\mathrm{mm}$

$$E=210000~\mathrm{MPa}$$
 , $\alpha=13~10^{-6}~\mathrm{K^{-1}}$

$$\Delta T = 50~\mathrm{K}$$

Résultats:

Soient A et I_z respectivement l'aire et le moment quadratique de la section droite.

L'allongement de la poutre 2-3 est égal à :

$$\delta = \alpha \, \Delta T \, L + \frac{N \, L}{E \, A}$$

où N est l'effort normal dans la poutre 2-3.

L'effort normal N est solution de l'équation :

$$\frac{1}{2}\,\delta = -\frac{N\,H^3}{3\,EI_z}\quad {\rm soit}\quad N\left(\frac{L}{2\,EA} + \frac{H^3}{3\,EI_z}\right) = -\frac{1}{2}\,\alpha\,\Delta T\,L$$

On obtient:

$$N = -6071.3 \text{ N}$$
 , $\delta = 0.62546 \text{ mm}$

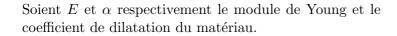
E12: Treillis plan – poutre soumise à une variation de température

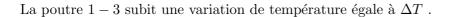
Référence : solution analytique.

Problème:

Le treillis plan à nœuds articulés représenté sur la figure ci-contre est constituée de 5 poutres de même matériau et de même section droite (carré creux de côté extérieur c et d'épaisseur t). Les poutres 1-2, 1-3 et 1-4 ont la même longueur L. Le triangle 2-3-4 est équilatéral.

L'ensemble est articulé en 2 et 4.





$$L=0.5~\mathrm{m}$$
 , $c=40~\mathrm{mm}$, $t=5~\mathrm{mm}$ $E=200000~\mathrm{MPa}$, $\alpha=12.5~10^{-6}~\mathrm{K^{-1}}$ $\Delta T=30~\mathrm{K}$

Résultats:

Soit A l'aire de la section droite.

L'effort normal dans les poutres 1-2, 1-3 et 1-4 est égal à :

$$N = \frac{-\sqrt{3} \alpha \Delta T E A}{2 + 3\sqrt{3}} = -12636 \text{ N}$$

L'effort normal dans les poutres 2-3 et 3-4 est égal à :

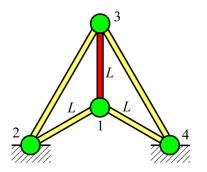
$$\frac{-N}{\sqrt{3}} = 7296 \text{ N}$$

Le déplacement vertical du point 1 est égal à :

$$\frac{2NL}{EA} = -0.09026 \text{ mm}$$

L'allongement de la poutre 1-3 est égal à :

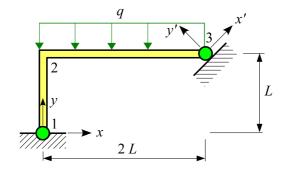
$$\delta = \alpha \, \Delta T \, L + \frac{NL}{EA} = 0.14237 \text{ mm}$$



E13 : Ossature plane – appui incliné

Référence : solution analytique.

Problème : la structure plane représentée sur la figure ci-dessous est constituée de 2 poutres de même matériau et de même section droite (rond creux de diamètre extérieur d et d'épaisseur t).



Elle est articulée en 1 et repose en 3 sur un appui incliné à 45° par rapport à l'axe x. Soit E le module de Young du matériau.

La poutre (2-3) porte une charge uniformément répartie d'intensité (0,q,0).

On donne:

$$L=0.3~\mathrm{m}$$
 , $d=30~\mathrm{mm}$, $t=5~\mathrm{mm}$, $E=210000~\mathrm{MPa}$, $q=-1000~\mathrm{N/m}$

L'énergie de déformation due à l'effort tranchant est négligée (modèle de Bernoulli).

Modélisation : ajouter un changement de repère $\{x', y'\}$ en 3, puis définir la liaison dans ce repère local.

Résultats:

Posons :
$$X = \frac{-2 qL}{3} = 200 \text{ N}$$

Les actions de liaison sont égales à (dans le repère $\{x, y\}$):

$$\vec{R}_1 = \begin{Bmatrix} X \\ 2X \end{Bmatrix} = \begin{Bmatrix} 200 \\ 400 \end{Bmatrix}$$
N , $\vec{R}_3 = \begin{Bmatrix} -X \\ X \end{Bmatrix} = \begin{Bmatrix} -200 \\ 200 \end{Bmatrix}$ N

Le moment fléchissant en 2 est égal à : -XL = -60 N.m

Soient A et I_z respectivement l'aire et le moment quadratique de la section droite. Le déplacement horizontal du nœud 3 dans le repère $\{x, y\}$ est égal à :

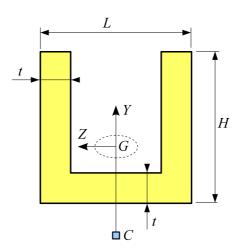
$$u_3 = \frac{6 qL^4}{27 EI_z} + \frac{12 qL^2}{9 EA} = -0.27009 \text{ mm}$$

Chapitre 3

Sections droites : caractéristiques et contraintes

S1 : Caractéristiques d'une section droite

Problème : considérons la section droite représentée sur la figure ci-dessous. Soient G le centre de gravité et C le centre de torsion.



1. Première étude :

On donne : L = H = 100 mm , t = 20 mm.

Calculer les caractéristiques de la section droite pour plusieurs maillages.

2. Deuxième étude :

Pour t = 5, 10, 20, 30, 40 mm, calculer les caractéristiques de la section et comparer avec les solutions analytiques valables pour les profils minces.

Modélisation:

Prendre une ossature spatiale quelconque, modéliser la section (section paramétrée) puis entrer dans le menu Calculer section droite.

Résultats:

Pour éditer les caractéristiques, sélectionner la commande Caractéristiques du menu Fichier.

1. Première étude :

On obtient (la valeur en % représente l'écart avec la valeur obtenue avec le maillage le plus fin) :

Maillage	$J~(\mathrm{cm}^4)$	$I_{\omega} \; (\mathrm{cm}^6)$	$Y_C \text{ (mm)}$	k_Y	k_Z
100 TR3	72.97	6379	-64.78	0.6331	0.2408
	6.77~%	2.95~%	0.89 %	2.81 %	2.99 %
400 TR3	70.13	6511	-65.10	0.6219	0.2366
	2.62 %	0.94~%	0.40 %	0.99 %	1.20 %
20 TR6	71.34	6535	-65.01	0.6228	0.2378
	4.39 %	0.58~%	0.54~%	1.14 %	1.71 %
100 TR6	68.80	6563	-65.26	0.6174	0.2348
	0.67~%	0.15~%	0.15~%	0.26~%	0.43 %
150 TR6	68.73	6563	-65.26	0.6174	0.2347
	0.57~%	0.15~%	0.15~%	0.26~%	0.38 %
400 TR6	68.45	6570	-65.32	0.6163	0.2341
	0.16~%	0.05~%	0.06~%	0.08 %	0.13 %
2200 TR6	68.34	6573	-65.36	0.6158	0.2338

2. Deuxième étude :

Les formules de résistance des matériaux (R.D.M.) valables pour les **profils minces** sont donnés dans les références [1, 2, 4]:

$$J = \frac{t^3}{3}(h+2\,b) \quad , \quad I_\omega = \frac{h^2\,b^3t}{12}\frac{(2\,h+3\,b)}{(h+6\,b)} \quad , \quad Y_C = -\frac{3\,b^2}{h+6\,b} - \frac{b^2}{h+2\,b}$$

où
$$h = L - t$$
 et $b = H - t/2$

On obtient (M.E.F. = solution éléments finis obtenue avec ~ 400 triangles à 6 nœuds) :

t (mm)	$J \text{ (cm}^4)$			$I_{\omega} \ (\mathrm{cm}^6)$			$Y_{C} \text{ (mm)}$		
	M.E.F.	R.D.M.	Δ (%)	M.E.F.	R.D.M.	Δ (%)	M.E.F.	R.D.M.	Δ (%)
5	1.206	1.208	0.17	2500	2473	1.08	-74.45	-74.71	0.36
10	9.286	9.333	0.51	4269	4077	4.50	-72.12	-73.25	1.57
20	68.44	69.33	1.29	6569	5393	17.91	-65.32	-70.30	7.70
30	211.3	216.0	2.22	7835	5123	34.61	-55.17	-67.47	22.29
40	454.9	469.3	3.17	7653	4096	46.48	-41.40	-64.64	56.16

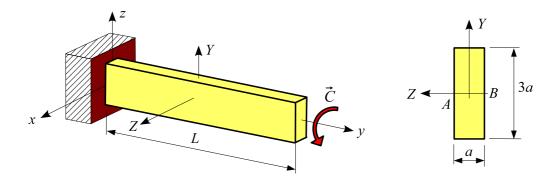
 Δ représente l'écart entre la solution analytique et la solution éléments finis, cette dernière servant de référence.

34 RDM-Ossatures

S2: Torsion d'une poutre rectangulaire

Référence : S. Laroze, Mécanique des structures - Tome 2 : Poutres, Cépaduès, 2005, page 93.

Problème : la poutre console représentée sur la figure est en acier de caractéristiques élastiques E et ν . Son extrémité libre est soumise à un couple de composantes (0, C, 0).



On donne:

$$E=200000~\mathrm{MPa}$$
 , $\nu=0.3$, $L=1~\mathrm{m}$, $a=100~\mathrm{mm}$, $C=100~\mathrm{kN.m}$

Calculer la constante de torsion de la section droite, la rotation θ de l'extrémité libre de la poutre et le cisaillement maximal τ_{max} pour plusieurs maillages de la section.

Modélisation : activer le menu Calculer section droite du menu Modéliser.

Résultats:

Référence :

$$J = a^4 \left(1 - \frac{64}{\pi^5} \sum_{n=1,3,\dots}^{\infty} \frac{1}{n^5} \tanh \frac{3n\pi}{2} \right) , \quad \theta = \frac{CL}{GJ}$$

$$\tau_{\text{max}} = \frac{aC}{J} \left(1 - \frac{8}{\pi^2} \sum_{n=1,3,\dots}^{\infty} \frac{1}{n^2 \cosh \frac{3n\pi}{2}} \right)$$

On obtient (activer le menu Contraintes sur section droite du menu Résultats) :

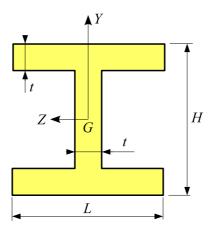
maillage	$J~(\mathrm{cm}^4)$	θ (rad)	$\tau_{\rm max} ({\rm MPa})$
100 TR3	8040.34	0.0161685	114.77
400 TR3	7934.79	0.0163835	119.59
50 TR6	7913.64	0.0164273	124.55
100 TR6	7902.96	0.0164495	124.64
400 TR6	7899.86	0.0164560	124.73
référence	7899.51	0.0164567	124.75

Remarque: le cisaillement est maximal en A et B.

S3 : Caractéristiques d'une section droite

Problème:

Considérons la section droite représentée sur la figure ci-dessous :



1. Première étude :

On donne : H=120 mm , L=100 mm , t=20 mm

Calculer les caractéristiques de la section droite pour plusieurs maillages.

2. Deuxième étude :

Pour t = 5, 10, 20, 30, 40 mm, calculer les caractéristiques de la section et comparer avec les solutions analytiques valables pour les profils minces.

Modélisation:

Prendre une ossature spatiale quelconque, modéliser la section (section paramétrée) puis activer le menu Calculer section droite.

36 RDM – Ossatures

Résultats:

Pour éditer les caractéristiques, sélectionner la commande Caractéristiques du menu Fichier.

1. Première étude :

On obtient (la valeur en % représente l'écart avec la valeur obtenue avec le maillage le plus fin) :

Maillage	$J~(\mathrm{cm}^4)$	$I_{\omega} \; (\mathrm{cm}^6)$	k_Y	k_Z
100 TR3	84.15	7766	0.3745	0.6768
	8.78 %	2.61 %	3.14 %	4.33 %
400 TR3	80.20	7883	0.3676	0.6591
	3.67 %	1.14 %	1.24~%	1.60 %
100 TR6	78.22	7946	0.3646	0.6515
	1.11 %	0.35~%	0.41 %	0.43~%
200 TR6	77.94	7953	0.3642	0.6508
	0.75 %	0.26~%	0.30 %	0.32~%
400 TR6	77.63	7963	0.3637	0.6498
	0.35~%	0.14~%	0.17~%	0.17~%
800 TR6	77.51	7967	0.3634	0.6493
	0.19 %	0.09 %	0.08 %	0.09 %
4552 TR6	77.36	7974	0.3631	0.6487

2. Deuxième étude :

Les formules de résistance des matériaux (R.D.M.) valables pour les profils minces sont donnés dans les références [1, 2, 4]:

$$J = \frac{t^3}{3}(H - t + 2L)$$
 $I_{\omega} = \frac{(H - t)^2 L^3 t}{24}$

On obtient (M.E.F. = solution éléments finis obtenue avec ~ 400 triangles à 6 nœuds) :

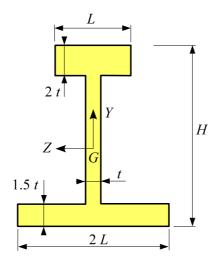
t (mm)	$J~(\mathrm{cm}^4)$			$I_{\omega} (\mathrm{cm}^6)$		
	M.E.F.	R.D.M.	Δ (%)	M.E.F.	R.D.M.	Δ (%)
5	1.306	1.313	0.53	2749	2755	0.22
10	10.206	10.333	1.24	4991	5042	1.02
20	77.627	80.000	3.06	7963	8333	4.65
30	247.74	261.00	5.35	8990	10125	12.63
40	546.82	597.33	9.24	8285	10667	28.75

 Δ représente l'écart entre la solution analytique et la solution éléments finis, cette dernière servant de référence.

S4: Caractéristiques d'une section droite

Problème:

Considérons la section droite représentée sur la figure ci-dessous :



1. Première étude :

On donne : H = 250 mm L = 100 mm , t = 20 mm.

Calculer les caractéristiques de la section droite pour plusieurs maillages.

2. Deuxième étude :

On donne : H=250 mm , L=100 mm.

Pour t = 5, 10, 20, 30, 40 mm, calculer les caractéristiques de la section et comparer avec les solutions analytiques valables pour les profils minces.

Modélisation:

Prendre une ossature spatiale quelconque, modéliser la section (section paramétrée puis activer le menu Calculer section droite.

38 RDM – Ossatures

Résultats:

Pour éditer les caractéristiques, sélectionner la commande Caractéristiques du menu Fichier.

1. Première étude :

On obtient (la valeur en % représente l'écart avec la valeur obtenue avec le maillage le plus fin) :

Maillage	$J \text{ (cm}^4)$	$I_{\omega} \ (\mathrm{cm}^6)$	$Y_C \text{ (mm)}$	k_Y	k_Z
100 TR3	473.1	125622	-59.24	0.3398	0.5143
	19.71 %	5.08~%	0.49~%	2.81 %	3.86%
400 TR3	416.7	130683	-59.36	0.3341	0.5018
	5.44 %	1.25~%	0.29~%	1.18 %	1.33 %
100 TR6	401.5	131913	-59.48	0.3321	0.4973
	1.59 %	0.32~%	0.08~%	0.58 %	0.42~%
200 TR6	398.6	132081	-59.48	0.3315	0.4969
	0.86 %	0.20~%	0.08~%	0.39 %	0.34~%
400 TR6	396.6	132226	-59.51	0.3307	0.4958
	0.35~%	0.09~%	0.03~%	0.15 %	0.12~%
800 TR6	395.9	132279	-59.52	0.3305	0.4955
	0.18 %	0.05~%	0.02~%	0.09 %	0.06~%
2500 TR6	395.2	132342	-59.53	0.3302	0.4952

2. Deuxième étude :

Les formules de résistance des matériaux (R.D.M.) valables pour les profils minces sont donnés dans la référence [4] :

$$h = H - 1.75 t$$
 $J = \frac{t^3}{3}(h + 14.75 L)$ $I_{\omega} = \frac{h^2 L^3 t}{7}$

On obtient (M.E.F. = solution éléments finis obtenue avec ~ 400 triangles à 6 nœuds) :

t (mm)	$J~(\mathrm{cm}^4)$			$I_{\omega} \ (\mathrm{cm}^6)$		
	M.E.F.	R.D.M.	Δ (%)	M.E.F.	R.D.M.	Δ (%)
5	6.96	7.25	4.17	41581	41573	0.02
10	53.7	56.9	5.96	77286	77223	0.08
20	397	451	13.60	132226	132071	0.12
30	1219	1505	23.46	166662	167170	0.30
40	2599	3531	35.86	182568	185143	1.41

 Δ représente l'écart entre la solution analytique et la solution éléments finis, cette dernière servant de référence.

S5 : Caractéristiques d'une section droite

Problème:

Considérons la section droite représentée sur la figure (UPN 400).

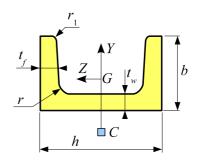
On donne (en mm):

$$h = 400$$
, $b = 110$

$$t_w = 14 , t_f = 18$$

$$r = 18 , r_1 = 9$$

Calculer les caractéristiques de la section droite pour plusieurs maillages.



Modélisation:

Prendre une ossature spatiale quelconque, modéliser la section (bibliothèque) puis activer le menu Calculer section droite.

Résultats:

Pour éditer les caractéristiques, sélectionner la commande Caractéristiques du menu Fichier.

maillage	$J~(\mathrm{cm}^4)$	$I_{\omega} \; (\mathrm{cm}^6)$	$Y_C \text{ (mm)}$	k_Y	k_Z
100 TR3	101.25	195071	-48.62	0.2353	0.5866
	25.54~%	8.87 %	4.14~%	22.62~%	3.15 %
400 TR3	84.69	211369	-50.49	0.1975	0.5702
	5.01 %	1.26 %	0.45~%	2.92~%	0.26~%
100 TR6	81.00	207173	-49.90	0.2058	0.5760
	0.43~%	3.22~%	1.62~%	7.24~%	1.28 %
200 TR6	80.75	213908	-50.72	0.1922	0.5687
	0.12 %	0.07~%	0.00~%	0.16 %	0.00 %
400 TR6	80.72	214076	-50.74	0.1919	0.5685
	0.09 %	0.00 %	0.04~%	0.00 %	0.04 %
800 TR6	80.70	214109	-50.74	0.1918	0.5685
	0.06 %	0.02~%	0.04~%	0.05~%	0.04 %
2600 TR6	80.65	214066	-50.72	0.1919	0.5687

RDM-Ossatures

S6: Caractéristiques d'une section droite

Problème:

Considérons la section droite représentée sur la figure (IPN 500).

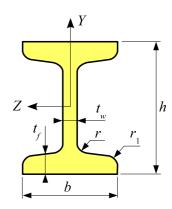
On donne (en mm):

$$h = 500$$
, $b = 185$

$$t_w = 18 , t_f = 27$$

$$r = 18$$
, $r_1 = 10.8$

Calculer les caractéristiques de la section droite pour plusieurs maillages.



Modélisation:

Prendre une ossature spatiale quelconque, modéliser la section (bibliothèque) puis activer le menu Calculer section droite.

Résultats:

Pour éditer les caractéristiques, sélectionner la commande Caractéristiques du menu Fichier.

Maillage	$J~(\mathrm{cm}^4)$	$I_{\omega} \; (\mathrm{cm}^6)$	k_Y	k_Z
100 TR3	511.26	1164816	0.4990	0.6546
	36.72 %	11.49 %	2.72 %	26.13 %
400 TR3	398.11	1298520	0.4866	0.5338
	6.46 %	1.33 %	0.16 %	2.85 %
100 TR6	402.15	1270004	0.4841	0.5556
	7.54 %	3.5~%	0.35 %	7.05 %
200 TR6	376.44	1319475	0.4841	0.5171
	0.67 %	0.26~%	0.35 %	0.37~%
400 TR6	375.95	1320964	0.4840	0.5161
	0.54~%	0.37~%	0.37 %	0.56~%
800 TR6	375.44	1320812	0.4841	0.5160
	0.40 %	0.36~%	0.35 %	0.58~%
3200 TR6	373.94	1316060	0.4858	0.5190

S7: Caractéristiques d'une section droite

 $\mathbf{Problème}: \mathrm{considérons}$ la section droite représentée sur la figure : HEM 320 .

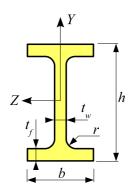
On donne (en mm):

$$h = 359$$
, $b = 309$

$$t_w = 21 , t_f = 40$$

$$r = 27$$

Calculer les caractéristiques de la section droite pour plusieurs maillages.



Modélisation:

Prendre une ossature spatiale quelconque, modéliser la section (bibliothèque) puis activer le menu Calculer section droite.

Résultats:

Pour éditer les caractéristiques, sélectionner la commande Caractéristiques du menu Fichier.

Maillage	$J~(\mathrm{cm}^4)$	$I_{\omega} \; (\mathrm{cm}^6)$	k_Y	k_Z
100 TR3	1754.81	4813570	0.2356	0.7204
	16.20 %	1.56 %	1.82 %	3.02 %
400 TR3	1607.62	4857678	0.2335	0.7082
	6.46~%	0.66~%	0.91 %	1.27~%
100 TR6	1521.79	4888856	0.2315	0.6997
	0.77~%	0.02~%	0.04 %	0.06~%
200 TR6	1514.09	4888907	0.2315	0.6996
	0.26~%	0.02~%	0.04~%	0.04~%
400 TR6	1511.22	4889701	0.2314	0.6994
	0.07~%	0.01 %	0.00 %	0.01 %
800 TR6	1510.42	4889938	0.2314	0.6993
	0.02~%	0.00 %	0.00 %	0.00 %
3600 TR6	1510.13	4890017	0.2314	0.6993

RDM-Ossatures

S8 : Caractéristiques d'une section droite

Problème : considérons la section droite représentée sur la figure (cornière à ailes inégales et à coins arrondis : $[70 \times 50 \times 7]$).

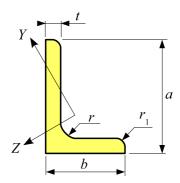
On donne (en mm):

$$a = 70$$
, $b = 50$

$$t = 7, r = 7$$

$$r_1 = 3.5$$

Calculer les caractéristiques de la section droite pour plusieurs maillages.



Modélisation:

Prendre une ossature spatiale quelconque, modéliser la section (bibliothèque) puis activer le menu Calculer section droite.

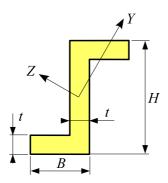
Résultats:

Pour éditer les caractéristiques, sélectionner la commande Caractéristiques du menu Fichier.

Maillage	$J~(\mathrm{cm}^4)$	$I_{\omega} \; (\mathrm{cm}^6)$	$\beta_{\omega} \; (\mathrm{cm}^6)$	$Y_C \text{ (mm)}$	$Z_C \text{ (mm)}$	k_Y	k_Z
200 TR3	1.4592	2.9307	0.7301	-11.99	15.93	0.5171	0.3891
	6.73 %	15.45%	21.05 %	1.64~%	1.30 %	2.34 %	3.26~%
400 TR3	1.4175	3.2488	0.8591	-12.07	16.02	0.5119	0.3836
	3.68 %	6.27~%	7.10 %	0.98~%	0.74%	1.31 %	1.80 %
100 TR6	1.3686	3.4656	0.9125	-12.17	16.12	0.5059	0.3775
	0.10 %	0.02 %	1.33~%	0.16~%	0.12%	0.12 %	0.19~%
200 TR6	1.3677	3.4659	0.9278	-12.19	16.14	0.5053	0.3768
	0.04 %	0.01 %	0.32~%	0.00~%	0.00%	0.00 %	0.00~%
400 TR6	1.3673	3.4661	0.9243	-12.19	16.14	0.5053	0.3769
	0.01 %	0.01 %	0.05~%	0.00~%	0.00%	0.00 %	0.03~%
800 TR6	1.3672	3.4663	0.9249	-12.19	16.14	0.5053	0.3768
	0.00 %	0.00 %	0.01 %	0.00~%	0.00%	0.00 %	0.00~%
1360 TR6	1.3672	3.4663	0.9248	-12.19	16.14	0.5053	0.3768

S9: Caractéristiques d'une section droite

Problème : considérons la section droite représentée sur la figure ci-dessous :



1. Première étude :

On donne : H=200 mm , B=120 mm , t=20 mm.

Calculer les caractéristiques de la section droite pour plusieurs maillages.

2. Deuxième étude :

Pour t = 5, 10, 20, 30, 40 mm, calculer les caractéristiques de la section et comparer avec les solutions analytiques valables pour les profils minces.

Modélisation:

Prendre une ossature spatiale quelconque, modéliser la section (section paramétrée) puis activer le menu Calculer section droite.

44 RDM – Ossatures

Résultats:

Pour éditer les caractéristiques, sélectionner la commande Caractéristiques du menu Fichier.

1. Première étude :

On obtient (la valeur en % représente l'écart avec la valeur obtenue avec le maillage le plus fin) :

Maillage	$J~(\mathrm{cm}^4)$	$I_{\omega} \; (\mathrm{cm}^6)$	$\beta_{\omega} \; (\mathrm{cm}^6)$	k_Y	k_Z
100 TR3	114.35	83705	131793	0.4772	0.4655
	8.14 %	1.13~%	0.41~%	1.53 %	1.39 %
400 TR3	110.81	84186	132030	0.4732	0.4614
	4.79 %	0.56~%	0.23~%	0.68 %	$\mid 0.50 \% \mid$
100 TR6	106.43	84566	132241	0.4710	0.4593
	0.65 %	0.11~%	0.07~%	0.21~%	0.04~%
200 TR6	106.08	84590	132268	0.4707	0.4592
	0.32 %	0.08~%	0.05~%	0.15 %	0.02~%
400 TR6	105.85	84627	132303	0.4703	0.4592
	0.10 %	0.04~%	0.02~%	0.06~%	$\mid 0.02 \% \mid$
700 TR6	105.75	84655	132330	0.4700	0.4591
	0.01 %	0.00 %	0.00~%	0.00 %	0.02~%
1240 TR6	105.74	84658	132333	0.4700	0.4591

2. Deuxième étude :

Les formules de résistance des matériaux (R.D.M.) valables pour les profils minces sont donnés dans les références [1, 2, 4]:

$$h = H - t$$
 $b = B - 0.5 t$ $J = \frac{t^3}{3}(h + 2b)$ $I_{\omega} = \frac{h^2 b^3 t}{12} \frac{(b + 2h)}{(2b + h)}$

On obtient (M.E.F. = solution éléments finis obtenue avec ~ 400 triangles à 6 nœuds) :

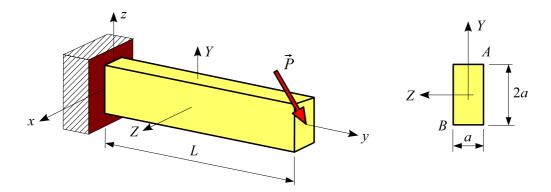
t (mm)	$J~(\mathrm{cm}^4)$			$I_{\omega} (\mathrm{cm}^6)$		
	M.E.F.	R.D.M.	Δ (%)	M.E.F.	R.D.M.	$\Delta~(\%)$
5	1.791	1.792	0.06	30337	30335	0.01
10	13.96	14.00	0.29	53944	53923	0.04
20	105.8	106.7	0.85	84627	84452	0.21
30	337.5	342.0	1.33	98495	97945	0.56
40	753.0	768.0	1.99	100656	99556	1.09
50	1379	1417	2.76	95008	93381	1.71
60	2218	2304	3.88	84668	82605	2.44

 Δ représente l'écart entre la solution analytique et la solution éléments finis, cette dernière servant de référence.

S10: Contrainte normale dans une section droite: flexion déviée

Référence : Solution analytique.

Problème : la poutre console représentée sur la figure ci-dessous est soumise en son extrémité libre à une force de composantes (P, 0, 3P).



On donne:

$$L = 1 \text{ m}$$
 , $a = 100 \text{ mm}$, $P = -10000 \text{ N}$

Étudier la contrainte normale dans la section encastrée.

Modélisation: sélectionner l'option Ossature spatiale.

Résultats:

Solution analytique : dans la section encastrée, la contrainte normale est égale à :

$$\sigma = -\frac{Mf_Z}{I_Z}Y + \frac{Mf_Y}{I_Y}Z$$

avec

$$I_Y = \frac{a^4}{6}$$
 , $I_Z = \frac{2a^4}{3}$, $Mf_Y = PL$, $Mf_Z = 3PL$

soit

$$\sigma = \frac{-3 \, PL}{2 \, a^4} \, (3 \, Y - 4 \, Z)$$

La contrainte de **traction** est maximale en A(a,-a/2) : $\sigma_T = \frac{-15\,P\,L}{2\,a^3} = 75$ MPa .

La contrainte de **compression** est maximale en B(-a, a/2) : $\sigma_C = -75$ MPa .

Méthode des éléments finis : pour extraire les résultats ci-dessus, activer le menu Contraintes sur section du menu Résultats, désigner la poutre, puis entrer l'abscisse de la section encastrée (commande Abscisse de la section du menu Modéliser).

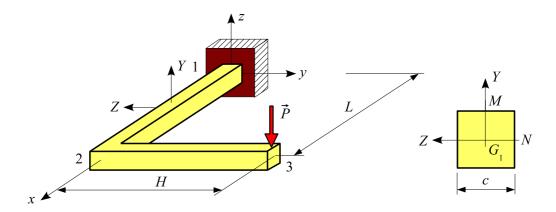
46 RDM - Ossatures

S11: Contraintes dans une section droite: flexion-torsion

Référence : solution analytique.

Problème:

La structure représentée sur la figure ci-dessous est composée de deux poutres de section droite carrée (côté c). Elle est encastrée en 1 et porte en 3 une force de composantes (0,0,P). Soient E et ν les caractéristiques élastiques du matériau.



On donne:

$$E=200000~\mathrm{MPa}$$
 , $\nu=0.3$ $L=0.5~\mathrm{m}$, $H=0.4~\mathrm{m}$ $c=40~\mathrm{mm}$

P = -3000 N

Pour plusieurs maillages de la section droite, calculer :

- le déplacement vertical des nœuds 2 et 3.
- dans la section encastrée, la contrainte de cisaillement et la contrainte équivalente de Von Mises au point M.
- dans la section encastrée, la position et la valeur du cisaillement maximal.

Modélisation:

Sélectionner l'option Ossature spatiale ou l'option Ossature plancher.

Résultats:

Solution analytique:

Les caractéristiques de la section sont :

$$A = c^2$$
 , $I_Z = \frac{c^4}{12}$, $J = 0.1405770 c^4$, $k_Y = 5/6$

www.GenieCivilPDF.com

- le déplacement vertical du nœud 2 est égal à :

$$w_2 = \frac{PL^3}{3EI_Z} + \frac{PL}{GA\,k_Y} = -2.92969 - 0.01463 = -2.94431 \text{ mm}$$

- le déplacement vertical du nœud 3 est égal à :

$$w_3 = \left(\frac{P(L^3 + H^3)}{3EI_Z} + \frac{PH^2L}{GJ}\right) + \frac{P(L+H)}{GA\,k_Y} = -13.09931 - 0.02633 = -13.12564 \text{ mm}$$

- en M et dans le repère $\{XYZ\}$, le tenseur des contraintes a pour expression :

$$[\sigma(M)] = \begin{bmatrix} \sigma & 0 & \tau \\ 0 & 0 & 0 \\ \tau & 0 & 0 \end{bmatrix} \quad \text{avec} \quad \sigma = -\frac{6LP}{c^3} \quad , \quad \tau = \frac{4.80387 \, HP}{c^3}$$

On obtient donc : $\sigma = 140.63$ MPa et $\tau = -90.07$ MPa.

On en déduit la contrainte équivalente de Von Mises : $\sigma_{VM}=\sqrt{\sigma^2+3\,\tau^2}=210.03$ MPa

- Le cisaillement est maximal en N. En ce point, le tenseur des contraintes a pour expression :

$$[\sigma(N)] = \begin{bmatrix} 0 & \tau & 0 \\ \tau & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \quad \text{avec} \quad \tau = \frac{4.80387 \, HP}{c^3} + \frac{3 \, P}{2 \, c^2}$$

Le cisaillement maximal est donc égal à : $\tau_{max} = |\tau| = 92.89 \text{ MPa}.$

Remarque: le deuxième terme de l'expression ci-dessus est dû à l'effort tranchant.

Méthode des éléments finis :

- Déplacements (utiliser le bouton droit de la souris) :

	modèle de	e Bernoulli	modèle de	Timoshenko
maillage	$w_2 \text{ (mm)}$	$w_3 \text{ (mm)}$	$w_2 \text{ (mm)}$	$w_3 \text{ (mm)}$
50 TR3	-2.92969	-12.91785	-2.94308	-12.94196
400 TR3	=	-13.05862	-2.94414	-13.08464
50 TR6	=	-13.08275	-2.94431	-13.10906
400 TR6	=	-13.09886	=	-13.12519
référence	-2.92969	-13.09931	-2.94431	-13.12564

- Contraintes : pour extraire les résultats demandés, activer le menu **Contraintes sur section** du menu **Résultats**, désigner la poutre 1-2, puis entrer l'abscisse de la section encastrée (commande **Abscisse de la section** du menu **Modéliser**).

maillage	$\tau_{\rm max} ({\rm MPa})$	σ_{VM} (MPa)
100 TR3	86.27	205.20
400 TR3	89.93	206.59
100 TR6	92.49	209.66
400 TR6	92.77	209.89
référence	92.89	210.03

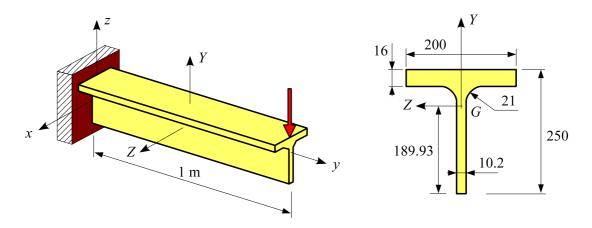
48 RDM – Ossatures

S12: Cisaillement du à l'effort tranchant

Référence: théorie élémentaire du cisaillement.

Problème:

La poutre console représentée sur la figure est constituée d'une demi-poutrelle IPE 500.



L'extrémité de la poutre est soumise à une force de composantes (0, 0 - 100) kN.

Calculer le cisaillement au centre de gravité G et le cisaillement maximal pour plusieurs maillages.

Résultats:

Activer le menu Contraintes sur section du menu Résultats.

Solution analytique : au centre de gravité de la section, le cisaillement dû à l'effort tranchant T_Y est égal à (théorie élémentaire du cisaillement) :

$$\tau_G = \frac{T_Y M_Z}{I_Z t_w}$$

où M_Z est le moment statique par rapport à l'axe Z de la surface de la section située au dessus de l'axe Z.

Les caractéristiques de la section sont :

$$I_Z=3262.67~{\rm cm}^4~~,~~M_Z=\frac{189.93}{2}~189.93\times 10.2=183.98~{\rm cm}^3~~,~~t_w=10.2~{\rm mm}$$
 d'où $\tau_G=55.28~{\rm MPa}.$

Méthode des éléments finis : on obtient (pour extraire la quantité τ_G , effectuer une coupe droite parallèle à Y au voisinage de G) :

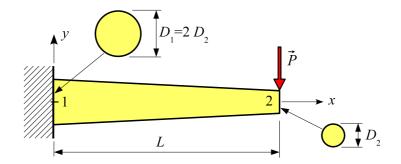
maillage	$\tau_{\rm max} \ ({ m MPa})$	$\tau_G (\mathrm{MPa})$
100 TR3	55.53	55.53
400 TR3	55.35	55.34
100 TR6	57.02	55.58
400 TR6	56.90	55.28

S13 : Contrainte normale dans une poutre à section droite variable

Référence : solution analytique.

Problème:

La poutre droite de longueur L représentée sur la figure est encastrée en 1. Soit E le module de Young du matériau. La section droite est un rond plein dont le diamètre varie linéairement entre les sections 1 et 2. La poutre porte en 2 une force de composantes (0, P, 0).



On donne:

$$L=1~\mathrm{m}$$
 , $D_2=50~\mathrm{mm}$, $D_1=2\,D_2=100~\mathrm{mm}$, $P=-10000~\mathrm{N}$

L'énergie de déformation due à l'effort tranchant est négligée (modèle de **Bernoulli**). Étudier la contrainte normale le long de la poutre.

Résultat :

 $Solution\ analytique$: la contrainte normale maximale dans la section droite d'abscisse x est égale à :

$$\sigma = \pm \frac{32 P \left(L - x\right)}{\pi D^3}$$

où le diamètre D de la poutre est égal à :

$$D = D_1 + (D_2 - D_1) \frac{x}{L} = D_2 \left(2 - \frac{x}{L} \right)$$

Cette contrainte normale est maximale dans la section d'abscisse L/2:

$$\sigma_{\rm max} = \pm \frac{128\,P\,L}{27\,\pi\,D_2^3} = \pm 120.72~{\rm MPa}$$

Méthode des éléments finis : activer le menu Poutre du menu Résultats :

$$\sigma_{\rm max} = \pm 120.72~{\rm MPa}$$
à $x = 0.5~{\rm m}$

www.GenieCivilPDF.com

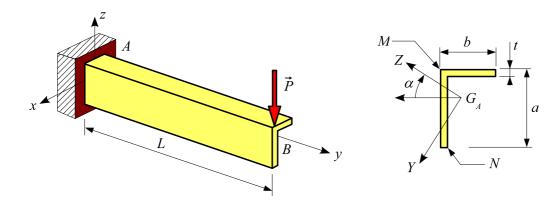
SDM - Ossatures

S14: Contrainte normale dans une section droite: flexion déviée

Référence : solution analytique.

Problème:

La poutre droite de longueur L représentée sur la figure est encastrée en 1. La section droite est une cornière à ailes inégales (grande aile : a, petite aile : b, épaisseur : t).



La poutre porte en 2 une force de composantes (0,0,P).

On donne : L=0.8 m , a=100 mm , b=60 mm , t=9 mm , P=-1000 N .

Étudier la contrainte normale dans la section encastrée.

Modélisation:

- Sélectionner l'option **Ossature spatiale**.
- Pour créer la poutre, désigner le point B puis le point A.
- Modifier l'orientation angulaire de la poutre.

Résultats:

Solution analytique : les composantes de la charge dans le repère $\{XYZ\}$ sont $(0, -P\cos\alpha, P\sin\alpha)$. Dans la section encastrée, la contrainte normale est donc égale à :

$$\sigma = -\frac{Mf_Z}{I_Z}Y + \frac{Mf_Y}{I_Y}Z = \frac{PL\cos\alpha}{I_Z}Y - \frac{PL\sin\alpha}{I_Y}Z$$

avec : $I_Y = 22.9774 \text{ cm}^4 \text{ et } I_Z = 153.1764 \text{ cm}^4$.

La contrainte de traction est maximale en M (-27.629 mm , 25.498 mm) : $\sigma_T = 43.65$ MPa .

La contrainte de **compression** est maximale en N (63.412 mm, -16.841 mm): $\sigma_C = -51.02$ MPa.

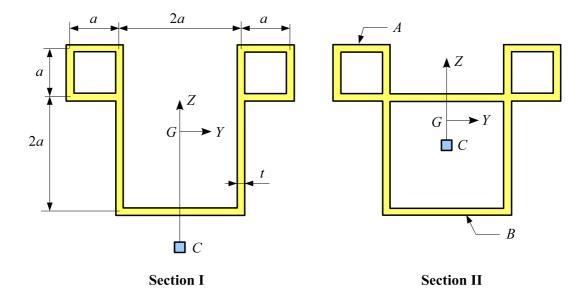
Méthode des éléments finis: pour extraire ces résultats, activer le menu Contraintes sur section du menu Résultats, puis entrer l'abscisse de la section encastrée (commande Abscisse de la section du menu Modéliser).

S15: Section droite à parois minces

Référence: A. Bazergui, T. Bui-Quoc, A. Biron, G. McIntyre, C. Laberge, *Résistance des matériaux, Recueil de problèmes, tome 1*, exercice 16.7, Éditions de l'École Polytechnique de Montréal.

Problème:

Les deux sections droites à parois minces représentées sur la figure ci-dessous ont une épaisseur constante t.



On donne:

a = 100 mm, t = 10 mm.

Calculer pour chaque section droite:

- les caractéristiques en utilisant plusieurs maillages.
- la contrainte moyenne de cisaillement dans la paroi en A et B quand la section droite est soumise à un moment de torsion $M_X=10000~\rm N.m$

Modélisation:

Modéliser une poutre console spatiale soumise à un moment de torsion.

Définir la section (géométrie importée : fichier IGES ou .geo).

52 RDM – Ossatures

Résultats:

Pour évaluer les caractéristiques, activer le menu Calculer section droite du menu Modéliser.

Pour évaluer les contraintes, activer le menu Contraintes sur section droite du menu Résultats.

Section I (section ouverte):

Référence :

$$J=2\,a\,t\,(a^2+t^2)=2020~{\rm cm}^4$$

$$\tau_A=\frac{M_X}{4\,t\,(a^2+t^2)}=24.75~{\rm MPa}\quad,\quad \tau_B=\frac{M_X}{2\,a\,(a^2+t^2)}=4.95~{\rm MPa}$$

On obtient:

caractéristiques :

Maillage	$J~(\mathrm{cm}^4)$	$I_{\omega} (\mathrm{cm}^6)$	$Z_C \text{ (mm)}$	k_Y	k_Z
270 TR3	2190	2015578	-248.69	0.1184	0.4238
1000 TR3	2153	2021152	-248.69	0.1175	0.4204
160 TR6	2140	2022219	-248.67	0.1172	0.4192
220 TR6	2137	2022294	-248.66	0.1171	0.4188
900 TR6	2131	2022509	-248.64	0.1169	0.4179
1800 TR6	2129	2022511	-248.63	0.1168	0.4176

– contraintes moyennes : $\tau_A = 24.54~\mathrm{MPa}$, $\tau_B = 4.70~\mathrm{MPa}$ (~ 900 triangles à 6 nœuds)

Section II (section fermée):

R'ef'erence:

$$J=10\,a^3\,t=10000~{\rm cm}^4$$

$$\tau_A=\frac{M_X}{20\,a^2\,t}=5.00~{\rm MPa}\quad,\quad \tau_B=\frac{M_X}{10\,a^2\,t}=10.00~{\rm MPa}$$

On obtient:

- caractéristiques :

Maillage	$J~(\mathrm{cm}^4)$	$I_{\omega} \; (\mathrm{cm}^6)$	$Z_C \text{ (mm)}$	k_Y	k_Z
240 TR3	10577	578053	-66.06	0.3281	0.3735
850 TR3	10480	578457	-66.06	0.3249	0.3699
170 TR6	10427	579207	-66.00	0.3237	0.3684
240 TR6	10414	579239	-66.01	0.3231	0.3678
850 TR6	10388	579895	-66.07	0.3221	0.3667
1900 TR6	10379	579995	-66.09	0.3217	0.3663

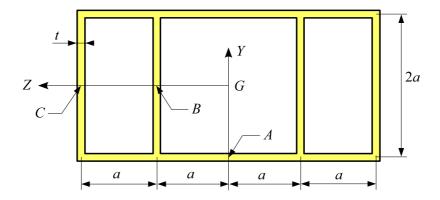
- $contraintes\ moyennes$: $\tau_A=5.10\ \mathrm{MPa}$ $\,$, $\,$ $\tau_B=9.90\ \mathrm{MPa}$ ($\sim900\ \mathrm{triangles}$ à 6 nœuds)

S16: Contraintes tangentielles dans un caisson multicellulaire

Référence : Résistance des matériaux : cisaillement dans les poutres à parois minces.

Problème:

Considérons la poutre console dont la section droite (caisson rectangulaire à deux cloisons) est représentée ci-dessous. Les parois et les cloisons ont la même épaisseur t.



On donne : a = 500 mm , t = 20 mm.

1. Première étude :

Calculer les caractéristiques de la section droite pour plusieurs maillages.

2. Deuxième étude :

La section droite est soumise à un moment de torsion $M_X=1000~\mathrm{kN.m}$.

Évaluer le cisaillement moyen dans la paroi en A, B et C.

3. Troisième étude :

La section droite est soumise à un effort tranchant $T_Y=1000~\mathrm{kN}$.

Évaluer le cisaillement moyen dans la paroi en en A, B et C.

Modélisation:

Modéliser une poutre console spatiale.

La section droite est paramétrée : [1000 , 2000 , 1000 , 20 , 20 , 20] mm

Résultats:

1. Première étude : caractéristiques

 $R\'{e}f\'{e}rence$:

$$J = \frac{112}{5} a^3 t = 5600 \ 10^3 \ \text{cm}^4$$

On obtient :

Maillage	$J~(\mathrm{cm}^4)$	k_Y	k_Z
100 TR3	$5752 \ 10^3$	0.4385	0.4550
400 TR3	$5683 \ 10^3$	0.4337	0.4502
100 TR6	$5664 \ 10^3$	0.4322	0.4486
400 TR6	$5650 \ 10^3$	0.4315	0.4475
1000 TR6	$5648 \ 10^3$	0.4313	0.4473

2. Deuxième étude : cisaillement dû au couple de torsion ${\cal M}_x$

 $R\'{e}f\'{e}rence$:

$$au_A = 4\, au \qquad au_C = 3\, au \quad , \quad au_B = au \quad {\rm avec} \quad au = rac{M_X}{56\,a^2t}$$

On obtient (~ 1000 triangles à 6 nœuds) :

	référence	RDM-Ossatures
τ_A 14.29 MPa	14.33 MPa	
$ au_B$	3.57 MPa	3.61 MPa
$ au_C$	10.71 MPa	10.76 MPa

3. Troisième étude : cisaillement dû à l'effort tranchant T_Y

 $R\'{e}f\'{e}rence$:

$$au_A = 0$$
 $au_B = 5\, au$ $au_C = 4\, au$ $avec$ $au = rac{T_Y}{32\,at}$

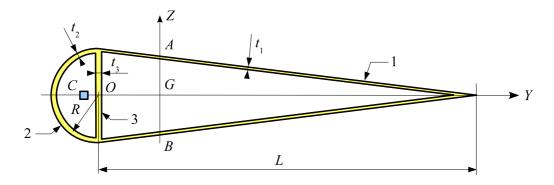
On obtient (~ 1000 triangles à 6 nœuds):

	référence	RDM – Ossatures
$ au_B$	15.63 MPa	15.63 MPa
$ au_C$	12.50 MPa	12.52 MPa

S17: Cisaillement dans un profil mince fermé et simplement cloisonné

Référence : S. LAROZE, Mécanique des structures, tome 5, Cépaduès, 2005, pages 133,167.

Problème : considérons le gouvernail de profondeur dont la section droite est représentée ci-dessous.



On donne : $L=600~\mathrm{mm}$, $R=75~\mathrm{mm}$, $t_1=2~\mathrm{mm}$, $t_2=4~\mathrm{mm}$, $t_3=3~\mathrm{mm}$.

1. Première étude :

Évaluer les caractéristiques de la section : constante de torsion de Saint Venant J, constante de gauchissement I_{ω} , position du centre de cisaillement C, coefficients d'aire cisaillée (k_Y, k_Z) .

2. Deuxième étude :

Évaluer le cisaillement moyen dans les parois 1, 2 et 3 quand la section droite est soumise à un couple de torsion $M_t = 10000$ N.m.

3. Troisième étude :

La section droite est soumise à un effort tranchant $T_Y = 10000$ N. Évaluer le cisaillement maximal.

Résultats:

1. Première étude : caractéristiques de la section

 $R\acute{e}f\acute{e}rence: J = 1809 \text{ cm}^4.$

On obtient:

Maillage	$J~(\mathrm{cm}^4)$	$I_{\omega} \; (\mathrm{cm}^6)$	$Y_C \text{ (mm)}$	k_Y	k_Z
200 TR3	1828	531	-200.6	0.6166	0.0958
400 TR3	1820	297	-201.1	0.6146	0.0949
200 TR6	1819	370	-201.4	0.6140	0.0946
400 TR6	1816	343	-201.2	0.6136	0.0943
1200 TR6	1815	334	-201.2	0.6134	0.0942

56 RDM – Ossatures

2. Deuxième étude : cisaillement dû au couple de torsion

On obtient (~ 1000 triangles à 6 nœuds):

	référence	RDM - Ossatures
τ_1	42.90 MPa	43.24 MPa
$ au_2$	32.24 MPa	32.16 MPa
$ au_3$	14.39 MPa	14.06 MPa

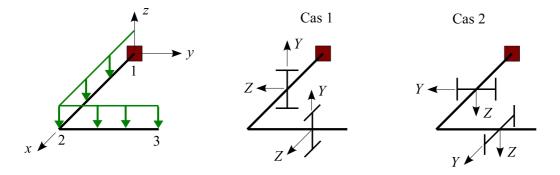
3. Troisième étude : cisaillement dû à l'effort tranchant \mathbf{T}_Y

R'ef'erence: le cisaillement est maximal en A et B et vaut : $\tau_{max} = 5.16$ MPa.

On obtient (maillage : ~ 1000 triangles à 6 nœuds) : $\tau_{max} = 5.23$ MPa.

S18: Flexion - torsion

Problème: la structure représentée sur la figure est constituée de deux poutres identiques de longueur L. Soient E et ν les caractéristiques élastiques du matériau. L'ensemble est encastré en 1. Les deux poutres portent une charge uniformément répartie d'intensité linéique (0,0,p).



On donne:

$$E=200000~\mathrm{MPa}$$
 , $\nu=0.3$

$$L = 0.6 \text{ m}$$
, section droite : IPN 180

$$p = -1000 \text{ N/m}$$

Dans chacun des cas suivants et pour plusieurs maillages de la section droite, évaluer le déplacement vertical des sections 2 et 3.

Résultats:

Les caractéristiques J, k_Y ... utilisées dans la solution de référence sont extraites de la bibliothèque de profilés (maillage = 4×1993 triangles à 6 nœuds).

Cas 1:

R'ef'erence:

$$w_2 = \frac{11 pL^4}{24 EI_Z} + \frac{3 pL^2}{2 GA k_Y} = -0.02057 - 0.00582 = -0.02638 \text{mm}$$

$$w_3 = \frac{7 pL^4}{12 EI_Z} + \frac{2 pL^2}{GA k_Y} + \frac{pL^4}{2 GJ} = -0.02618 - 0.00775 - 9.28441 = -9.31834 \text{ mm}$$

Les déplacements obtenus sont (en mm):

	modèle de Bernoulli		modèle de Timoshenko	
maillage	w_2	w_3	w_2	w_3
400 TR3	-0.02057	-8.46166	-0.02635	-8.46937
800 TR3	=	-8.83228	-0.02638	-8.84003
400 TR6	=	-9.25606	-0.02640	-9.26384
800 TR6	=	-9.26805	-0.02641	-9.27583
référence	-0.02057	-9.31059	-0.02638	-9.31834

58 RDM – Ossatures

Cas 2:

R'ef'erence:

$$w_2 = \frac{11 pL^4}{24 EI_Y} + \frac{3 pL^2}{2 GA k_Z} = -0.36576 - 0.00444 = -0.37020 \text{ mm}$$

$$w_3 = \frac{7 pL^4}{12 EI_Y} + \frac{2 pL^2}{GA k_Z} + \frac{pL^4}{2 GJ} = -0.46551 - 0.00592 - 9.28441 = -9.75584 \text{ mm}$$

Les déplacements obtenus sont (en mm) :

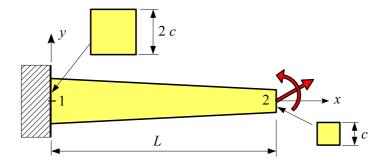
	modèle de Bernoulli		modèle de Timoshenko		
maillage	w_2	w_3	w_2	w_3	
400 TR3	-0.36576	-8.90356	-0.37000	-8.90921	
800 TR3	=	-9.27178	-0.37071	-9.27759	
400 TR6	=	-9.69548	-0.37022	-9.70143	
800 TR6	=	-9.70751	-0.37023	-9.71347	
référence	-0.36576	-9.74992	-0.37020	-9.75584	

S19: Contraintes normales dans une poutre à section droite variable

Référence : solution analytique.

Problème:

La poutre droite de longueur L représentée sur la figure est encastrée en 1. La section droite est un carré plein dont le côté varie linéairement entre les sections 1 et 2.



La poutre est soumise en 2 à :

- une force de composantes (N, F, 0).
- un couple de composantes (0,0,C).

On donne:

$$L=1~\mathrm{m}$$
 , $c=10~\mathrm{mm}$

$$N = 1000 \text{ N}$$
 , $F = 1 \text{ N}$, $C = 1 \text{ N.m}$

Évaluer les contraintes normales dans les sections 1 et 2.

Résultats:

Solution analytique:

$$\sigma_{1,\inf} = \frac{1}{4\,c^2} \left(N + \frac{3\,(C+F\,L)}{c} \right) = 4 \text{ MPa} \quad , \quad \sigma_{1,\sup} = \frac{1}{4\,c^2} \left(N - \frac{3\,(C+F\,L)}{c} \right) = 1 \text{ MPa}$$

$$\sigma_{2,\inf} = \frac{1}{c^2} \left(N + \frac{6\,C}{c} \right) = 16 \text{ MPa} \quad , \quad \sigma_{2,\sup} = \frac{1}{c^2} \left(N - \frac{6\,C}{c} \right) = 4 \text{ MPa}$$

Méthode des éléments finis : pour extraire ces résultats, activer le menu **Poutre** du menu **Résultats**, puis entrer l'abscisse de la section (commande **Valeur en un point** du menu **Résultats**).

Chapitre 4

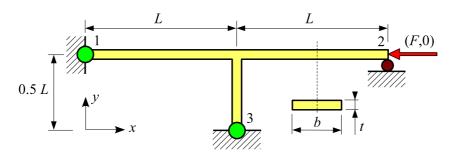
Flambement eulérien

F1: Ossature plane

Référence: S.P. Timoshenko, J.M. Gere, Théorie de la stabilité élastique, Dunod, 1966, page 69.

Problème:

L'ossature plane représentée sur la figure est constituée de trois poutres droites soudées entre elles. L'ensemble est lié à l'extérieur par une rotule en 1 et 3, un appui simple en 2.



La structure est en acier de module de Young E.

Les poutres ont une section droite rectangulaire de dimensions (b, t).

Le nœud 2 porte une force de composante (F,0).

On donne:

$$E = 200000 \text{ MPa}$$

$$L = 1 \text{ m}$$

$$t = 20 \text{ mm}$$
, $b = 100 \text{ mm}$

$$F = -10 \text{ kN}$$

L'énergie de déformation due à l'effort tranchant est négligée (modèle de Bernoulli).

Calculer le coefficient de charge critique en utilisant plusieurs maillages.

www.GenieCivilPDF.com

Résultats:

La charge critique est égale à :

$$F_C = \frac{13.9 \, EI_Z}{L^2} = 18.53 \text{ kN}$$

Le coefficient de charge critique est donc égal à :

$$\lambda_C = 18.53$$

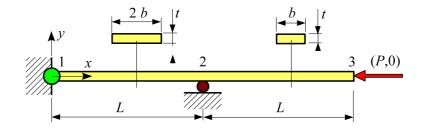
Nombre d'éléments	λ_C
3	24.82
5	18.70
10	18.53
20	18.52

F2: Poutre droite

Référence: Z.P. Bažant, L. Cedolin, Stability of structures, Oxford, 1991, page 70.

Problème:

L'ossature plane représentée sur la figure est constituée de deux poutres droites de longueur L et de section rectangulaire. Elle est liée à l'extérieur par une rotule en 1 et un appui simple en 2. Soit E le module de Young du matériau. La poutre porte en 3 une force (P,0).



On donne:

$$L=0.8~\mathrm{m}$$
 , $b=25~\mathrm{mm}$, $t=10~\mathrm{mm}$

$$E=210000~\mathrm{MPa}$$
 , $P=-1000~\mathrm{N}$

L'énergie de déformation due à l'effort tranchant est négligée (modèle de **Bernoulli**).

Calculer le coefficient de charge critique en utilisant plusieurs maillages.

Résultats:

Posons :
$$I_Z = \frac{b t^3}{12}$$

La charge critique est égale à :

$$P_C = 0.1813 \frac{\pi^2 E I_Z}{L^2} = 1223 \text{ N}$$

On en déduit $\lambda_C = 1.223$.

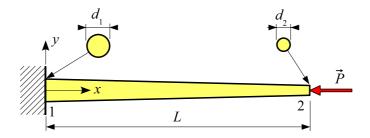
Nombre d'éléments	λ_C
2	1.227
4	1.223
10	1.223

F3: Poutre droite à section variable

Référence: S.P. Timoshenko, J.M. Gere, Théorie de la stabilité élastique, Dunod, 1966, page 127.

Problème:

La poutre droite 1-2 de longueur L est encastrée en 1. Soit E le module de Young du matériau. La section droite est un rond plein dont le diamètre varie linéairement entre les nœuds 1 et 2. La poutre porte en 2 une force (P,0).



On donne:

$$L = 1.2 \text{ m}$$

$$d_1 = 50 \text{ mm}$$
, $d_2 = 28.117 \text{ mm}$ $(I_{z2} = 0.1 I_{z1})$

$$E = 200000 \text{ MPa}$$

$$P = -10000 \text{ N}$$

L'énergie de déformation due à l'effort tranchant est négligée (modèle de **Bernoulli**).

Calculer le coefficient de charge critique en utilisant plusieurs maillages.

Résultats:

La charge critique est égale à :

$$P_C = 1.202 \frac{EI_{z1}}{L^2} = 51218 \text{ N}$$

On en déduit : $\lambda_C = 5.1218$.

Nombre d'éléments	λ_C
1	5.322
2	5.154
10	5.127

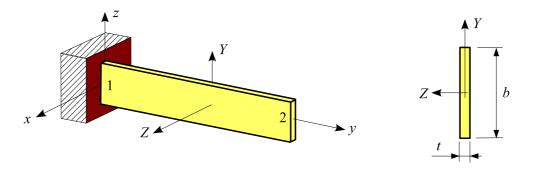
RDM-Ossatures

F4: Poutre console – flexion-torsion

Référence : Solution analytique

Problème:

La poutre droite (ossature spatiale), représentée sur la figure, a une longueur L et une section constante (rectangle plein : $b \times t$). Elle est en acier de constantes élastiques E et ν . Elle est encastrée en 1.



Cas de charge 1 : le nœud 2 porte une force (0,0,-P).

Cas de charge 2 : la poutre porte une charge uniformément répartie sur toute sa longueur (0,0,-q).

Cas de charge 3: le nœud 2 porte un couple (M,0,0).

On donne:

$$L = 1.2 \text{ m}$$
 , $b = 100 \text{ mm}$, $t = 6 \text{ mm}$

$$E=200000~\mathrm{MPa}$$
 , $\nu=0.3$

$$P = 100 \text{ N}$$
, $q = 100 \text{ N/m}$, $M = 100 \text{ Nm}$

L'énergie de déformation due à l'effort tranchant est négligée (modèle de Bernoulli).

Pour chaque cas de charge, calculer le coefficient de charge critique en utilisant plusieurs maillages et plusieurs hypothèses de calcul (petites rotations ou rotations modérées).

Modélisation:

La poutre est une ossature spatiale.

Pour évaluer la constante de torsion de Saint Venant, activer le menu **Calculer section droite** (~ 600 triangles à 6 nœuds). Les caractéristiques de la section sont : $I_Y = 0.18$ cm⁴, J = 0.6928 cm⁴.

Résultats:

Cas 1:

La charge critique est égale à :

$$F_C = \frac{4.0126}{L^2} \sqrt{EI_YGJ} = 1221 \text{ N (petites rotations et rotations modérées)}$$

Le coefficient de charge critique est donc égal à : $\lambda_{C1}=12.21$

Cas 2:

La charge critique est égale à :

$$q_C = \frac{12.85}{L^3} \sqrt{EI_YGJ} = 3257 \text{ N/m (petites rotations et rotations modérées)}$$

Le coefficient de charge critique est donc égal à : $\lambda_{C2} = 32.57$

Cas 3:

hypothèse petites rotations:

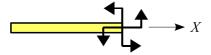
La charge critique est égale à : $M_C = \frac{\pi}{2L} \sqrt{EI_YGJ} = 573.4 \text{ Nm}$

Le coefficient de charge critique est donc égal à : $\lambda_{C3} = 5.734$

hypothèse rotations modérées :

La charge critique est égale à : $M_C = \frac{\pi}{L} \sqrt{EI_YGJ} = 1146.7 \text{ Nm}$

Le coefficient de charge critique est donc égal à : $\lambda_{C4}=11.467$



Remarque : quand les rotations ne sont pas petites, le résultat dépend de la manière dont le couple extérieur est appliqué. Le résultat ci-dessus est obtenu avec un couple semi-tangentiel [5].

On obtient avec RDM – Ossatures :

nombre d'éléments	λ_{C1}	λ_{C2}	λ_{C3}	λ_{C4}
1	18.25	57.48	6.322	12.644
2	13.05	38.61	5.882	12.644
3	12.54	34.74	5.799	11.995
10	12.24	32.75	5.739	11.514
20	12.21	32.62	5.735	11.479
solution analytique	12.21	32.57	5.734	11.467

www.GenieCivilPDF.com

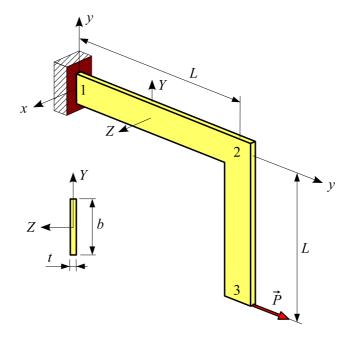
RDM-Ossatures

F5: Lame équerre – flexion-torsion

Référence: J.-H. Argyris, O. Hilpert, G.-A. Malejannakis, D.-W. Scharpf, On the geometrical stiffness of a beam in space – a consistent v. w. approach, CMAME, vol 20, (1979), 105-131.

Problème:

La structure **spatiale** représentée sur la figure est composée de deux poutres droites de longueur L et de section constante (rectangle plein : $b \times t$). Elle est encastrée en 1.



Soient E et ν les constantes élastiques du matériau.

Le nœud 3 porte une force (0, P, 0) où P peut être positif ou négatif.

On donne:

$$L=240~\mathrm{mm}$$
 , $b=30~\mathrm{mm}$, $t=0.6~\mathrm{mm}$ $E=71240~\mathrm{MPa}$, $\nu=0.31$ $P=\pm1~\mathrm{N}$

Calculer le coefficient de charge critique en utilisant plusieurs maillages et plusieurs hypothèses de calcul (petites rotations ou rotations modérées).

Modélisation:

Modéliser la section droite comme une section quelconque :

Forme = 5
$$A = bt = 0.18 \text{ cm}^2, I_Y = \frac{bt^3}{12} = 0.000054 \text{ cm}^4, I_Z = \frac{tb^3}{12} = 0.135 \text{ cm}^4$$

$$J = \frac{bt^3}{3} = 0.000216 \text{ cm}^4$$

www.GenieCivilPDF.com

Résultats:

Référence (avec 2×10 éléments) :

hypothèse petites rotations : $\lambda_C(P>0)=0.5507$, $\lambda_C(P<0)=0.4214$

hypothèse rotations modérées : $\lambda_C(P>0)=1.0880$, $\lambda_C(P<0)=0.6804$

	petites rotations		rotations modérées	
Nombre d'éléments	$\lambda_C(P>0)$	$\lambda_C(P < 0)$	$\lambda_C(P>0)$	$\lambda_C(P < 0)$
2×1	0.5604	0.4269	1.1754	0.7085
2×2	0.5531	0.4227	1.1101	0.6873
2×10	0.5507	0.4214	1.0880	0.6804
2×20	0.5506	0.4213	1.0873	0.6802

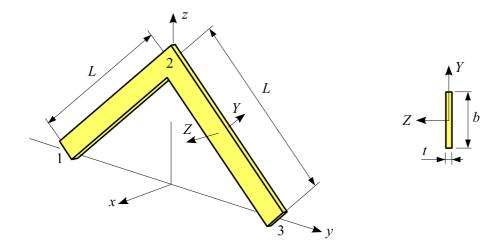
RDM-Ossatures

F6: Lame équerre – flexion-torsion

Référence: J.-H. Argyris, O. Hilpert, G.-A. Malejannakis, D.-W. Scharpf, On the geometrical stiffness of a beam in space – a consistent v. w. approach, CMAME, vol 20, (1979), 105-131.

Problème:

La structure **spatiale** représentée sur la figure est composée de deux poutres droites de longueur L, perpendiculaires entre elles et de section constante (rectangle plein : $b \times t$).



Soient E et ν les constantes élastiques du matériau.

Les conditions aux limites sont :

nœud 1 : $u = v = w = \theta_y = \theta_z = 0$ nœud 3 : $u = w = \theta_y = \theta_z = 0$

Cas de charge 1:

nœud 1 : un couple de composante (-M, 0, 0)nœud 3 : un couple de composantes (M, 0, 0)

où M peut être positif ou négatif.

Cas de charge 2:

nœud 2 : une force de composantes (0,0,P)

où P peut être positif ou négatif.

On donne:

$$L = 240 \text{ mm}$$
, $b = 30 \text{ mm}$, $t = 0.6 \text{ mm}$

$$E=71240~\mathrm{MPa}$$
 , $\nu=0.31$

$$M = \pm 1 \text{ N.mm}$$
, $P = \pm 1 \text{ N}$

Calculer le coefficient de charge critique en utilisant **plusieurs maillages** et plusieurs hypothèses de calcul (**petites rotations ou rotations modérées**).

Modélisation:

Modéliser la section droite comme une section quelconque :

$$Forme = 5$$

$$A = b\,t = 0.18~{\rm cm}^2~,~I_Y = \frac{b\,t^3}{12} = 0.000054~{\rm cm}^4~,~I_Z = \frac{t\,b^3}{12} = 0.135~{\rm cm}^4$$

$$J = \frac{bt^3}{3} = 0.000216 \text{ cm}^4$$

Résultats:

Cas de charge 1:

Référence (avec 2×10 éléments) :

hypothèse petites rotations: $\lambda_C(M>0)=315.79$, $\lambda_C(M<0)=937.84$

hypothèse rotations modérées : λ_C (M > 0) = 624.77 , λ_C (M < 0) = 624.77

On obtient (4 modes demandés, précision sur le calcul des valeurs propres = 0.0001):

nombre	petites r	rotations	rotations	modérées
d'éléments	$\lambda_C(M>0)$	$\lambda_C(M < 0)$	$\lambda_C(M>0)$	$\lambda_C(M<0)$
2×4	317.31	985.38	638.30	638.30
2×10	315.79	937.84	624.77	624.77
2×20	315.58	931.14	622.85	622.85
2×50	315.51	929.27	622.31	622.31

Remarque : la charge critique théorique (hypothèse rotations modérées) est égale à :

$$M_C = \frac{\pi}{L} \sqrt{EI_Y GJ} = 622.21 \text{ N.mm}$$

pour M positif ou négatif. Cette valeur est indépendante de l'angle que font entre elles les deux poutres.

www.GenieCivilPDF.com

Cas de charge 2:

Référence (avec 2×10 éléments) :

hypothèse petites rotations : $\lambda_C(P>0)=19.326$, $\lambda_C(P<0)=2.419$

hypothèse rotations modérées : $\lambda_C(P>0)=11.744$, $\lambda_C(P<0)=3.947$

On obtient (5 modes demandés, précision sur le calcul des valeurs propres = 0.0001):

nombre	petites rotations		rotations modérées	
d'éléments	$\lambda_C(P>0)$	$\lambda_C(P < 0)$	$\lambda_C(P>0)$	$\lambda_C(P < 0)$
2×4	15.419	2.420	12.265	3.951
2×10	14.908	2.419	11.744	3.947
2×20	14.836	2.419	11.672	3.946

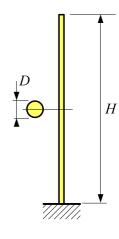
Remarque : la valeur λ_C (P > 0, hypothèse petites rotations) donnée dans la référence correspond au premier mode symétrique. On obtient ($5^{\rm e}$ valeur propre) : 19.326 avec 20 éléments.

F7: Flambement d'un mât vertical sous son poids propre

Référence : J. Courbon, Stabilité de l'équilibre élastique, Les Techniques de l'Ingénieur, C2040.

Problème:

Le mât représenté sur la figure est encastré à sa base et libre à son extrémité supérieure. Ce mât de hauteur H, de section droite constante : rond plein de diamètre D est soumis à son poids propre. Soient E le module de Young du matériau et ρ sa masse volumique. Soit g l'accélération de la pesanteur.



On donne:

$$H=4 \text{ m}$$
, $D=30 \text{ mm}$

$$E=200000~\mathrm{MPa}$$
 , $\rho=7800~\mathrm{kg/m^3}$

$$g = 10 \text{ m/s}^2$$

L'énergie de déformation due à l'effort tranchant est négligée (modèle de Bernoulli).

Évaluer le coefficient de charge critique en utilisant plusieurs maillages.

Résultats:

La charge critique par unité de longueur est égale à :

$$p_C = 7.8373 \frac{E I_Z}{H^3} = 973.804 \text{ N/m}$$

Le poids propre par unité de longueur étant égal à :

$$p = \frac{\pi D^2}{4} \rho g = 55.035 \text{ N/m} ,$$

on en déduit :

$$\lambda_C = \frac{p_C}{p} = 17.662$$

On obtient avec RDM – Ossatures :

Nombre d'éléments	λ_C
1	17.779
2	17.707
3	17.673
4	17.666
10	17.662

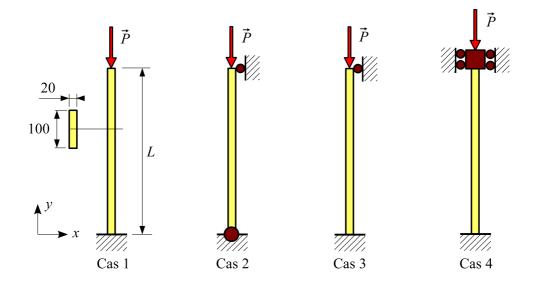
72 RDM – Ossatures

F8: Flambement d'une poutre droite

 ${\bf R\'ef\'erence}: Solution\ analytique.$

Problème:

La poutre droite représentée ci-dessous, de longueur L=1.2 m et de section droite constante (rectangle plein : 20 x 100 mm) est en acier de module Young E=200000 MPa. Elle porte à son extrémité supérieure une force de composantes (0, P=-1000) N.



L'énergie de déformation due à l'effort tranchant est négligée (modèle de Bernoulli).

Calculer le coefficient de charge critique pour les conditions aux limites suivantes :

Cas	1	2	3	4
Base	encastrement	rotule	encastrement	encastrement
Extrémité supérieure	libre	u = 0	u = 0	$\mathbf{u} = 0 \; , \theta_z = 0$

Résultats:

$$\textit{R\'ef\'erence}: \lambda_{C1} = 0.25\,\lambda \ , \ \lambda_{C2} = \lambda \ , \ \lambda_{C3} = 2.04575\,\lambda \ , \ \lambda_{C4} = 4\,\lambda \ \text{avec} \ \lambda = \frac{\pi^2\,EI_z}{|P|\,L^2}$$

On obtient:

nombre d'éléments	λ_{C1}	λ_{C2}	λ_{C3}	λ_{C4}
1	23.018	111.110		
2	22.858	92.073	191.750	370.37
3	22.849	91.530	188.100	373.550
4	22.847	91.432	187.340	368.300
5	22.847	91.405	187.110	366.720
20	22.846	91.385	186.950	365.550
solution analytique	22.846	91.385	186.951	365.541

www.GenieCivilPDF.com

F9: Flambement d'un cadre

Référence : C. MASSONNET, Résistance des matériaux, Dunod, 1968, page 410.

Problème:

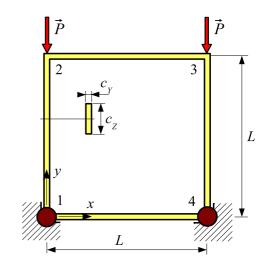
Le cadre représenté sur la figure est constitué de quatre poutres de longueur L et de section droite constante : rectangle plein $(c_Y \times c_Z)$. Soit E le module de Young du matériau. Le cadre est articulé en 1 et 4. Il porte en 2 et 3 deux forces égales de composantes (0, -P).

L = 0.6 m

 $c_Y=10~\mathrm{mm}$, $c_Z=50~\mathrm{mm}$

E = 200000 MPa

P = 1000 N



L'énergie de déformation due à l'effort tranchant est négligée (modèle de Bernoulli).

Calculer le coefficient de charge critique λ_C quand le déplacement horizontal du point 2 est libre et quand celui-ci est nul.

Résultats:

- Première étude : le nœud 2 est libre

La charge critique est égale à :

$$P_C = 5.68783 \frac{EI_Z}{L^2} = 13166 \text{ N}$$

On en déduit :

$$\lambda_C = \frac{P_C}{P} = 13.166$$

On obtient avec RDM – Ossatures :

Nombre d'éléments	λ_C
4	13.194
8	13.181
12	13.168
16	13.165
référence	13.166

- Deuxième étude : le déplacement horizontal du nœud 2 est nul

La charge critique est égale à :

$$P_C = 16.4634 \, \frac{EI_Z}{L^2} = 38110 \, \, \text{N}$$

On en déduit :

$$\lambda_C = \frac{P_C}{P} = 38.110$$

On obtient avec RDM – Ossatures :

nombre d'éléments	λ_C
4	
8	38.468
12	38.209
16	38.144
40	38.111
référence	38.110

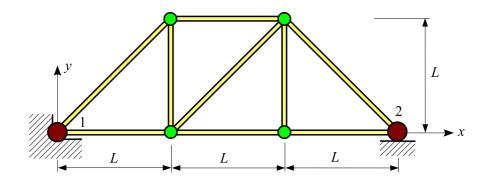
Chapitre 5

Modes propres

D1: Treillis plan à nœuds articulés

Référence: M. GÉRADIN, D. RIXEN, Théorie des vibrations, Masson, 1996, page 265.

Problème: l'ossature plane représentée sur la figure est constituée de neuf poutres droites articulées entre elles. Elle est liée à l'extérieur par une rotule en 1 et un appui simple en 2. Les poutres sont des carrés creux de côté extérieur c et d'épaisseur t. Soient E le module de Young du matériau et ρ sa masse volumique.



On donne:

$$L=1~\mathrm{m}$$
 , $c=40~\mathrm{mm}$, $t=5~\mathrm{mm}$, $E=200000~\mathrm{MPa}$, $\rho=8000~\mathrm{kg/m^3}$

Calculer les 9 premières fréquences propres de membrane.

 ${f Mod\'elisation}$: pour obtenir les vibrations de membrane, ne pas discrétiser les poutres.

Résultats: on obtient (fréquences en Hz):

Mode	Référence	RDM – Ossatures
1	171.40	171.39
2	290.50	290.48
9	1663.5	1663.41

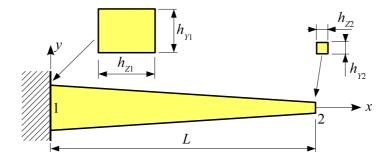
www.GenieCivilPDF.com

D2: Poutre droite à section variable

Référence: Guide de validation des progiciels de calcul de structures, AFNOR, 1990, page 200.

Problème:

La poutre droite 1-2 de longueur L est encastrée en 1. Soient E le module de Young du matériau et ρ sa masse volumique. La section droite est un rectangle plein dont les dimensions varient linéairement entre les nœuds 1 et 2.



On donne:

$$L=1~\mathrm{m}$$
 , $E=200000~\mathrm{MPa}$, $\rho=7800~\mathrm{kg}~\mathrm{m}^{-3}$

$$h_{Y1}=40~\mathrm{mm}$$
 , $h_{Z1}=50~\mathrm{mm}$

$$h_{Y2} = 10 \text{ mm}$$
, $h_{Z2} = 10 \text{ mm}$

L'énergie de déformation due à l'effort tranchant est négligée (modèle de **Bernoulli**).

Calculer les 5 premières fréquences propres.

Modélisation:

Modéliser la poutre comme une ossature plane. Utiliser plusieurs maillages.

Résultats:

On obtient (fréquences en Hz) pour les modes de flexion :

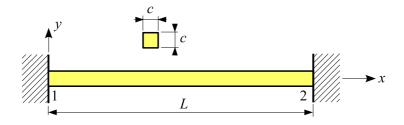
Mode	Référence	1 élément	2 éléments	5 éléments	10 éléments
1	56.55	56.81	56.59	56.55	56.55
2	175.79		180.81	175.83	175.73
3	389.01		404.07	390.21	388.65
4	702.36		903.32	714.02	701.25
5	1117.63			1186.12	1115.82

D3: Vibrations transversales d'une poutre droite bi-encastrée

Référence: R.D. Blevins, Formula for natural frequency and mode shape, Krieger, 1993, page 108.

Problème:

L'ossature plane représentée sur la figure est constituée d'une poutre droite 1-2 de longueur L et de section constante : carré plein de côté c. Elle est encastrée en 1 et 2. Soient E le module de Young du matériau et ρ sa masse volumique.



On donne:

$$L=1~\mathrm{m}$$
 , $E=210000~\mathrm{MPa}$, $\rho=7800~\mathrm{kg}~\mathrm{m}^{-3}$

$$c = 10 \text{ mm}$$

L'énergie de déformation due à l'effort tranchant est négligée (modèle de Bernoulli).

Calculer les 5 premières fréquences propres en utilisant plusieurs maillages.

Résultats:

Référence:

$$f_i = \frac{1}{2\pi} \frac{h_i^2}{L^2} \sqrt{\frac{EI_Z}{\rho A}}$$
 avec $h_i = 4.73004, 7.85320, 10.9956, 14.1372, 17.2788$

Les fréquences en Hz obtenues avec RDM – Ossatures sont :

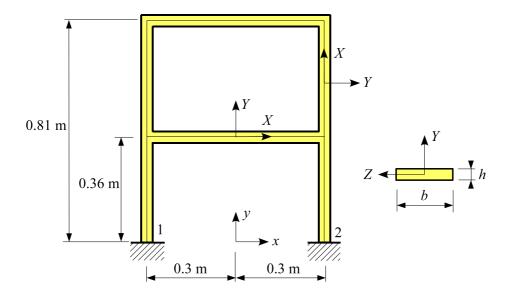
Mode	Référence	2 éléments	3 éléments	10 éléments	20 éléments
1	53.34	54.20	53.55	53.34	53.33
2	147.02	195.38	149.93	147.03	147.00
3	288.22		348.62	288.39	288.12
4	476.45		692.49	477.37	476.19
5	711.73			715.02	711.22

78 RDM – Ossatures

D4: Portique plan

Référence: Guide de validation des progiciels de calcul de structures, AFNOR, 1990, page 230.

Problème : l'ossature plane représentée sur la figure est constituée de 6 poutres droites de section constante : rectangle plein (b,h). Elle est encastrée en 1 et 2. Soient E le module de Young du matériau et ρ sa masse volumique.



On donne:

$$b = 29 \text{ mm}$$
, $h = 4.8 \text{ mm}$

$$E = 210000 \text{ MPa}$$
, $\rho = 7800 \text{ kg/m}^3$

L'énergie de déformation due à l'effort tranchant est négligée (modèle de Bernoulli).

Calculer les 13 premières fréquences propres en utilisant plusieurs maillages.

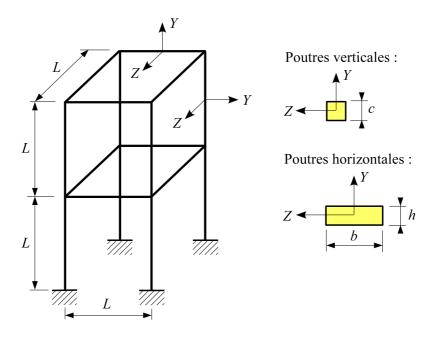
Résultats : on obtient (fréquences en Hz) :

Mode	Référence	6 éléments	20 éléments	60 éléments
1	8.8	8.79	8.78	8.78
2	29.4	29.52	29.44	29.44
3	43.8	52.93	43.87	43.85
4	56.3	86.77	56.35	56.30
5	96.2	118.64	96.41	96.18
13	335		343.36	335.48

D5: Ossature spatiale

Référence: M. Petyt, *Introduction to finite element vibration analysis*, Cambridge University Press, 1990, page 108.

Problème : l'ossature spatiale représentée sur la figure est constituée de 16 poutres droites. Elle est encastrée à sa base. Soient E et ν les caractéristiques élastiques du matériau et ρ sa masse volumique.



On donne:

$$E=219900~\mathrm{MPa}$$
 , $\nu=0.3$, $\rho=7900~\mathrm{kg/m^3}$

$$L=1 \text{ m}$$
 , $c=50 \text{ mm}$, $b=150 \text{ mm}$, $h=50 \text{ mm}$

L'énergie de déformation due à l'effort tranchant est négligée (modèle de Bernoulli).

Calculer les 10 premières fréquences propres en utilisant plusieurs maillages.

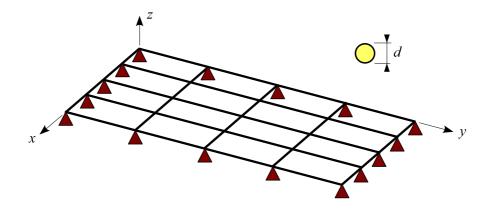
Résultats: on obtient (fréquences en Hz):

Mode	Référence	16 éléments	32 éléments	64 éléments	128 éléments
1	11.8	11.81	11.81	11.81	11.81
3		15.38	15.38	15.38	15.38
4	34.1	34.13	34.11	34.11	34.11
6		43.28	43.25	43.24	43.24
7		134.76	122.05	121.59	121.56
10		178.04	153.70	152.81	152.75

D6: Ossature plancher

Référence: J.P REZETTE, F. LELEUX, Calcul dynamique des structures par la méthode des éléments finis, Les notes techniques du CETIM, 1974, page 58.

Problème : l'ossature plancher représentée sur la figure est constituée de 40 poutres droites (ronds pleins de diamètre d). Soient E et ν les caractéristiques élastiques du matériau et ρ sa masse volumique. Les nœuds extérieurs reposent sur un appui simple.



On donne:

$$E=200000~\mathrm{MPa}$$
 , $\nu=0.3$, $\rho=8000~\mathrm{kg/m^3}$

$$d = 0.01 \text{ m}$$

L'énergie de déformation due à l'effort tranchant est négligée (modèle de **Bernoulli**).

Calculer les 6 premières fréquences propres de flexion-torsion en utilisant plusieurs maillages.

Modélisation:

Ossature plancher paramétrée : numéro 50 : $L=0.8~\mathrm{m}$, $H=0.4~\mathrm{m}$, N=M=4

Résultats: on obtient (fréquences en Hz):

Mode	Référence	40 éléments	80 éléments	160 éléments	320 éléments
1	96	96	96	96	96
2	165	165	165	165	165
3	278	278	276	275	275
4	306	306	301	300	300
5	369	370	361	361	361
6	468	469	453	452	452

Remarque : dans la référence, les calculs sont effectués avec 40 éléments.

D7: Vibrations transversales d'une poutre droite libre

Référence: R.D. Blevins, Formula for natural frequency and mode shape, Krieger, 1993, page 108.

Problème : la poutre droite de longueur L représentée a une section constante : carré plein de côté c. Soient E le module de Young du matériau et ρ sa masse volumique.

On donne:

$$E = 210000 \text{ MPa}$$
, $\rho = 7800 \text{ kg/m}^3$

$$L=1.2 \mathrm{\ m}$$
 , $c=20 \mathrm{\ mm}$

L'énergie de déformation due à l'effort tranchant est négligée (modèle de Bernoulli).

Étudier les 5 premiers modes propres élastiques de flexion en utilisant plusieurs maillages.

Calcul: introduire un décalage spectral égal à 20 Hz (il y a 3 modes rigides).

Résultats:

Référence:

$$f_i = \frac{h_i^2}{2\pi L^2} \sqrt{\frac{EI_Z}{\rho A}}$$

avec

$$h_i = 4.73004, 7.85320, 10.9956, 14.1372, 17.2788$$

On obtient (fréquences en Hz):

Mode	Référence	10 éléments	20 éléments	40 éléments
1	74.08	74.04	74.04	74.04
2	204.20	203.99	203.95	203.94
3	400.31	399.81	399.47	399.45
4	661.73	661.14	659.67	659.57
5	988.52	988.91	984.31	983.97

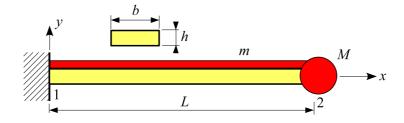
82 RDM – Ossatures

D8: Premier mode propre d'une poutre console avec masses

Référence: R.D. Blevins, Formula for natural frequency and mode shape, Krieger, 1993, page 158.

Problème:

La poutre console de longueur L représentée sur la figure est un rectangle plein de base b et de hauteur h. Soient E et ν les caractéristiques élastiques du matériau et ρ sa masse volumique. La poutre porte une masse ponctuelle M à son extrémité et une masse uniformément répartie sur toute sa longueur d'intensité m.



On donne:

$$L=0.8~\mathrm{m}$$
 , $E=200000~\mathrm{MPa}$, $\nu=0.3$, $\rho=7800~\mathrm{kg}~\mathrm{m}^{-3}$

$$b=100~\mathrm{mm}$$
 , $h=10~\mathrm{mm}$

$$M=2~{\rm kg}$$
 , $m=4~{\rm kg/m}$

L'énergie de déformation due à l'effort tranchant est négligée (modèle de Bernoulli).

Problème : étudier le premier mode propre en utilisant plusieurs maillages.

Résultats:

Référence :

$$f = \frac{1}{2\pi} \sqrt{\frac{3EI_z}{L^3(M+0.24267(\rho A+m)L)}}$$
 avec $A = bh$, $I_z = \frac{bh^3}{12}$

On obtient (fréquences en Hz) :

Maillage	M=m=0	$M \neq 0$, $m = 0$	$M=0$, $m \neq 0$	$M \neq 0$, $m \neq 0$
1 élément	12.84	8.43	8.95	6.98
2 éléments	12.79	8.42	10.00	7.45
3 éléments	12.78	8.42	10.21	7.55
20 éléments	12.78	8.42	10.39	7.62
référence	12.78	8.39	10.39	7.59

Bibliographie

- [1] J.-L. Batoz et G. Dhatt Modélisation des structures par éléments finis, Volume 2. Poutres et plaques, Hermès, 1990.
- [2] W. D. Pilkey Formulas for stress, strain and structural matrices, Wiley, 1994.
- [3] S. P. TIMOSHENKO Résistance des matériaux, Tome 2. Théorie développée et problèmes, Dunod, 1968.
- [4] W. C. Young et R. G. Budynas Roarks formulas for stress and strain, McGraw-Hill, 2002.
- [5] H. Ziegler Principles of structural stability, 2 éd., Birkauser Verlag, 1977.