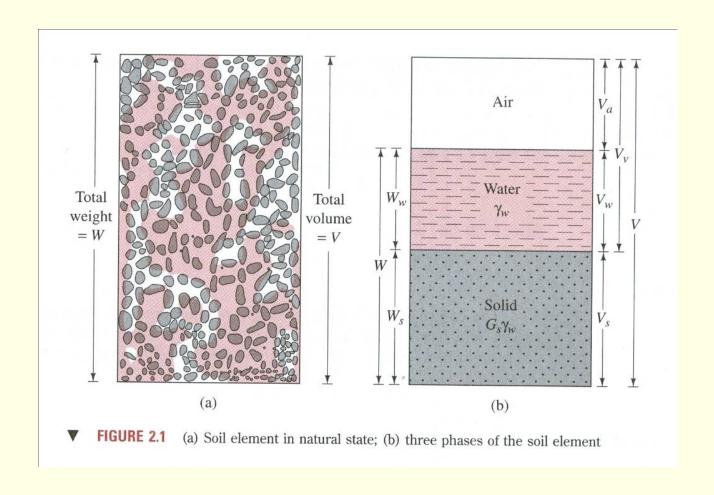
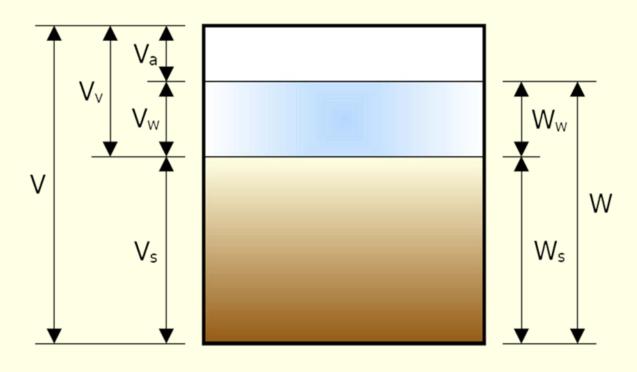


Volumétrie et compacité


AUCE 1172 Cours 2

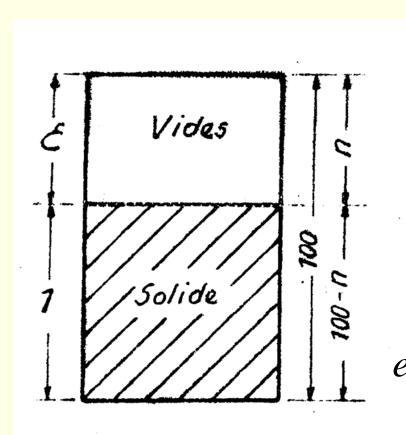
www.GenieCivilPDF.com

3 phases : solide, eau, gaz



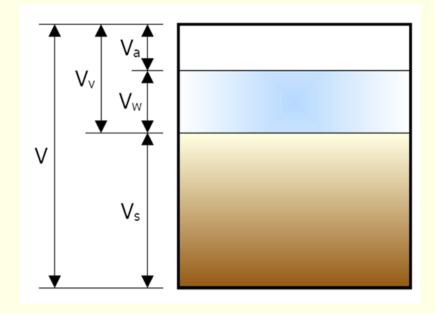
www.GenieCivilPDF.com

Analyse volumétrique


$$V = V_{\scriptscriptstyle S} + V_{\scriptscriptstyle V} = V_{\scriptscriptstyle S} + V_{\scriptscriptstyle W} + V_{\scriptscriptstyle a}$$

$$W = W_s + W_s$$
 www. Genie Civil PDF. com

Porosité (n) et indice des vides (e)



$$n = \frac{V_{v}}{V} = \frac{V_{v}}{V_{s} + V_{v}} = \frac{\frac{V_{v}}{V_{s}}}{1 + \frac{V_{v}}{V_{s}}} = \frac{e}{1 + e}$$

$$= \frac{V_{v}}{V_{s}} = \frac{V_{v}}{V - V_{v}} = \frac{\frac{V_{v}}{V}}{1 - \frac{V_{v}}{V}} = \frac{n}{1 - n}$$

Saturation

Sol sec

$$si V_w = 0 \Longrightarrow V_a = V_v$$

Sol saturé

$$si V_w = V_v \Longrightarrow V_a = 0$$

Degré de saturation

$$S_r = \frac{V_w}{V_v}$$

Teneur en eau

$$w = \frac{W_{_{\scriptscriptstyle W}}}{W_{_{\scriptscriptstyle S}}}$$

$$w = \frac{W_i - W_f}{W_f - W_t}$$

$$W_i = W_s + W_w + W_t$$

$$W_f = W_s + W_t$$

Séchage de l'échantillon à l'étuve Entre 105 et 110°C Jusqu'à plus évolution du poids Généralement 24 h

Poids spécifique

Poids spécifique des particules

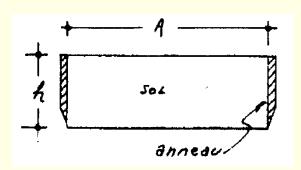
$$\gamma_s = \frac{W_s}{V_s}$$

specific gravity

$$G_s = \frac{\gamma_s}{\gamma_w}$$

pycnomètre

$$\gamma_{s} = \frac{P_{ps} - P_{p}}{P_{ps} - P_{p} + P_{pwT} - P_{pswT}} \cdot \gamma_{w}$$



Poids volumique

Anneau volumétrique et pesée

$$\gamma = \frac{W}{V}$$

Densitomètre à membrane

 Gammamétrie: indirectement par absorption rayonnement gamma à travers échantillon

www.GenieCivilPDF.com

Poids volumique sec

$$\gamma_d = \frac{W_s}{V}$$

$$\gamma = \frac{W}{V} = \frac{W_s + W_w}{V} = \frac{W_s + w \cdot W_s}{V} = (1 + w) \frac{W_s}{V} = (1 + w) \cdot \gamma_d$$

$$\gamma_d = \frac{\gamma}{1+w}$$

www.GenieCivilPDF.com

A la saturation ...

Poids volumique saturé

$$\gamma_{sat} = \gamma_d (1 + w_{sat})$$

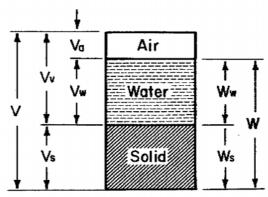
Poids volumique déjaugé

$$\gamma' = \gamma_{sat} - \gamma_{w}$$

Relations entre γ_d , n et γ_s ou entre γ_d , e et γ_s

$$\gamma_d = \frac{W_s}{V} = \frac{\gamma_s V_s}{V} = \gamma_s \frac{V - V_v}{V} = \gamma_s (1 - n) \rightarrow n = 1 - \frac{\gamma_d}{\gamma_s}$$

$$\gamma_d = \gamma_s (1 - n) = \gamma_s \left(1 - \frac{e}{1 + e} \right) = \gamma_s \left(\frac{1}{1 + e} \right) \rightarrow e = \frac{\gamma_s}{\gamma_d} - 1$$


Relations entre paramètres

 $V = total \ volume$

 $V_v = volume \ of \ voids$

 $V_{a} = volume \ of \ air$ $V_{w} = volume \ of \ water$

 $V_s'' = volume \ of \ solids$

W = total weight $W_w = weight of water$

 $W_s = weight of solids$

Volume Relationships Void ratio

$$e = \frac{V_{\nu}}{V_{s}}$$

Porosity

$$n = \frac{V_{v}}{V}$$

Degree of saturation

$$S_r = \frac{V_w}{V_v}$$

Weight-Volume Relationships Total unit weight (Moist Unit Weight)

$$\gamma = rac{W}{V}$$

$$\gamma = \frac{G(1+w)}{1+e}\gamma_w$$

$$\gamma = \frac{G + S_r e}{1 + e} \gamma_w$$

$$\gamma_{\text{sat}} = \frac{(G+e)}{1+e} \gamma_w$$

Quelques valeurs...

TABLE 2.2 Void Ratio, Moisture Content, and Dry Unit Weight for Some Typical Soils in a Natural State

		Natural moisture	Dry unit weight, γ_d		
Type of soil	Void ratio, e	content in a saturated state (%)	lb/ft³	kN/m³	
Loose uniform sand	0.8	30	92	14.5	
Dense uniform sand	0.45	16	115	18	
Loose angular-grained silty sand	0.65	25	102	16	
Dense angular-grained silty sand	0.4	15	121	19	
Stiff clay	0.6	21	108	17	
Soft clay	0.9-1.4	30-50	73-93	11.5–14.5	
Loess	0.9	25	86	13.5	
Soft organic clay	2.5-3.2	90-120	38-51	6-8	
Glacial till	0.3	10 *	134	21	

Teneur en eau à la saturation

$$V_w = V_v$$

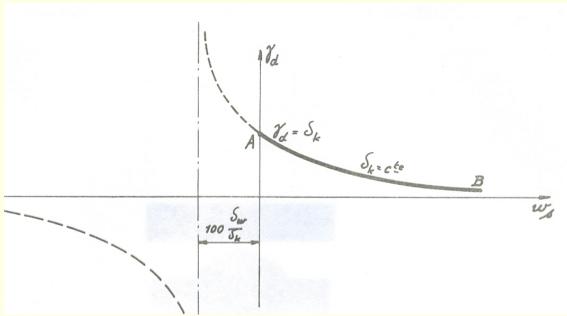
$$V_a = 0$$

$$S_r = \frac{V_w}{V_w} = 1$$

$$w_{sat} = \frac{W_w}{W_s} = \frac{V_w \gamma_w}{V_s \gamma_s} = e \frac{\gamma_w}{\gamma_s} = \frac{e}{G_s}$$

Relations à la saturation

$$w_{sat} = \frac{\gamma_w}{\gamma_s} e = \frac{\gamma_w}{\gamma_s} \cdot \frac{n}{1 - n} = \frac{\gamma_w}{\gamma_s} \cdot \frac{1 - \frac{\gamma_d}{\gamma_s}}{1 - 1 + \frac{\gamma_d}{\gamma_s}}$$


$$w_{sat} = \gamma_w \left(\frac{1}{\gamma_d} - \frac{1}{\gamma_s} \right) \qquad \gamma_d = \frac{1}{\frac{w_{sat}}{\gamma_w} + \frac{1}{\gamma_s}}$$

Courbe de saturation

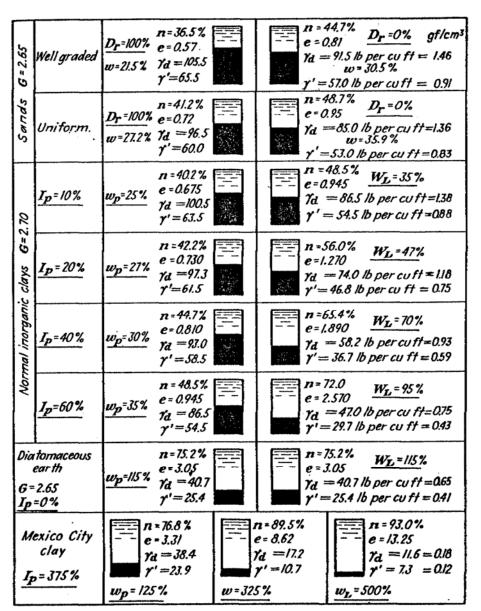
$$\gamma_d = \frac{1}{\frac{w_{sat}}{\gamma_w + \frac{1}{\gamma_s}}}$$

Relations à la saturation

• En éliminant γ_d

$$\frac{\gamma_{sat}}{1+w_{sat}} = \frac{1}{\frac{w_{sat}}{\gamma_w + \frac{1}{\gamma_s}}}$$

$$w_{sat} = \frac{\gamma_{sat}}{\gamma_{s}}$$


$$\frac{\gamma_{sat}}{\gamma_{sat} - 1}$$

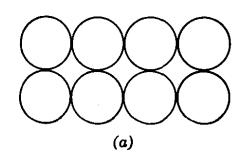
$$y_{w}$$
www.GenieCivilPDF.com

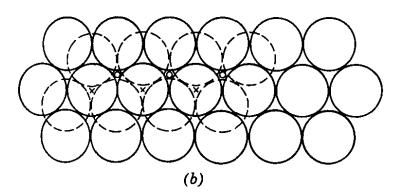
Limites de porosité selon les types de sols

Compacité relative

Dense, serré, très compact (dense) ←→ Lâche, très peu compact (loose)

Porosité minimale
Porosité maximale


Poids volumique sec maximale Poids volumique sec minimale



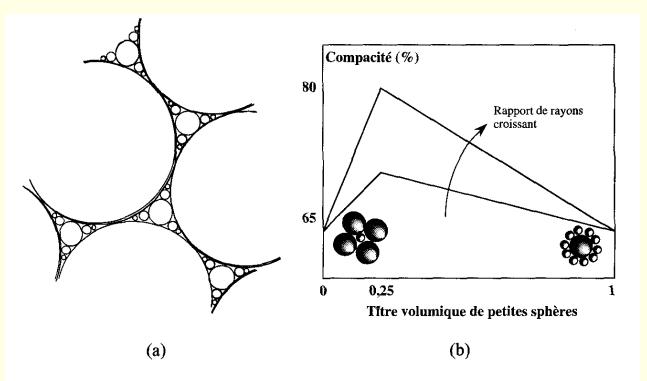
Limites de porosité

- Empilements théoriques de sphères
- Le plus dense : e=0.35;
 n=25.9%
- Le moins dense : e=0.91;
 n=47.6%

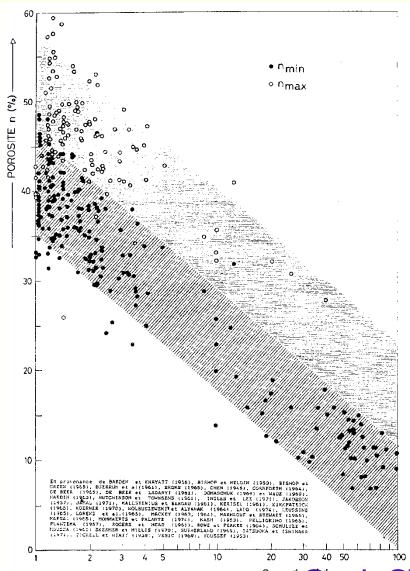
Arrangements of uniform spheres. (a) Plan and elevation view: simple cubic packing. (b) Plan view: dense packing. Solid circles, first layer; dashed circles, second layer; o, location of sphere centers in third layer: face-centered cubic array; ×, location of sphere centers in third layer: close-packed hexagonal array. (From Deresiewicz, 1958.)

Limites de compacité des sables

G=2.65	114/21/	$D_{r}=100\% n=36.5\% \\ e=0.57$ $w=21.5\% \gamma_{d}=105.5$ $\gamma'=65.5$	$n = 44.7\%$ $e = 0.81$ $p_r = 0\%$ $e = 0.81$ $\gamma_d == 91.5 \text{ lb per cuft} = 1.46$ $w = 30.5\%$ $\gamma' = 57.0 \text{ lb per cuft} = 0.91$
Sands	Uniform.	$\frac{D_{r}=100\%}{D_{r}=100\%} = 0.72$ $\frac{D_{r}=100\%}{e=0.72} = 0.72$ $w=27.2\% \gamma_{d}=96.5$ $\gamma'=60.0$	$n = 48.7\%$ $e = 0.95$ $\gamma_d = 85.0 \text{ /b per cuft} = 1.36$ $w = 35.9\%$ $\gamma' = 53.0 \text{ /b per cuft} = 0.83$


- Coefficient d'uniformité
 - plus uniforme → plus de vides
- Sphéricité et rondeur
 - plus angulaire → plus de vides

Influence de la granulométrie


Empilements théoriques de sphères

(a) Le remplissage apollonien de disques est construit de façon itérative en partant des plus gros disques en contact et en remplissant les vides par les disques les plus grands possibles d'une classe inférieure. (b) La compacité d'un mélange binaire de sphères présente un maximum pour une teneur en petites sphères de l'ordre de 25 %. Cette compacité maximale augmente quand le rapport des rayons croît.

Influence de l'uniformité

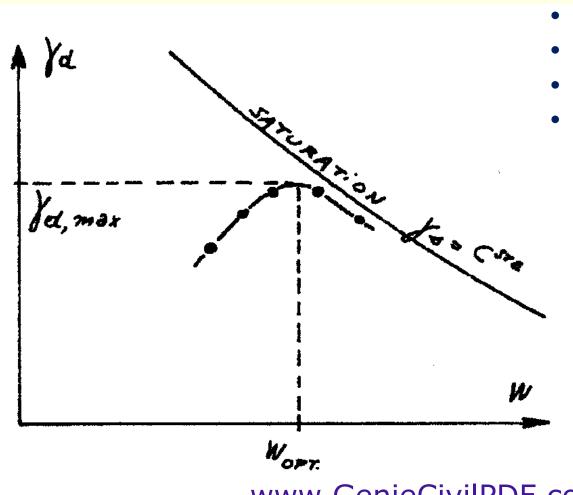
Empilements réels

www:GenieCivilPDF.com

Indice de densité ou densité relative

$$I_{D,e} = D_{r,e} = \frac{e_{\text{max}} - e}{e_{\text{max}} - e_{\text{min}}}$$

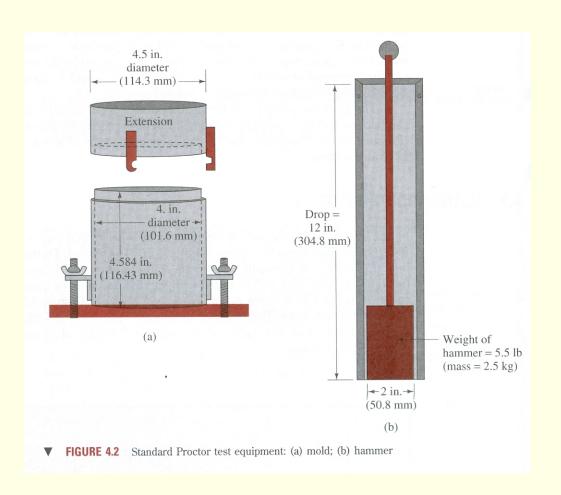
e_{min} est l'indice de vides du sol à l'état le plus lâche possible e_{max} est l'indice de vides du sol à l'état le plus serré possible e est l'indice de vides réel du sol


$$I_{D,n} = D_{r,n} = \frac{n_{\text{max}} - n}{n_{\text{max}} - n_{\text{min}}}$$

www.GenieCivilPDF.com

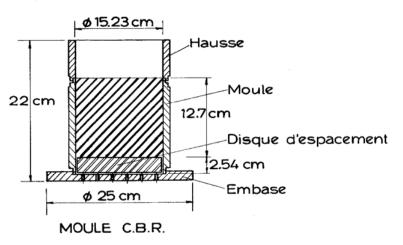
Compacité maximum → Diagramme Proctor

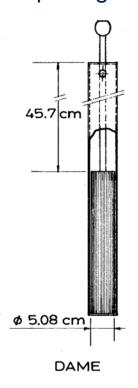
- courbe de saturation
- teneur en eau optimum
- énergie de compactage
 - indice de compactage


$$D_c = \frac{\gamma_d}{\gamma_{d,\text{max,Proctor}}}$$

www.GenieCivilPDF.com

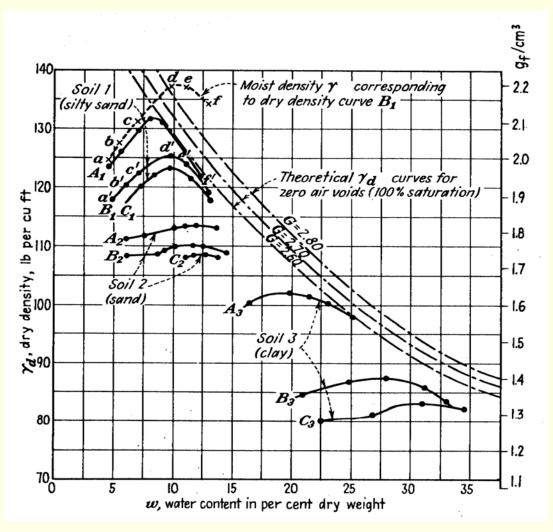
Essai Proctor





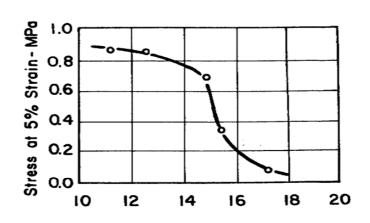
Energie de compactage

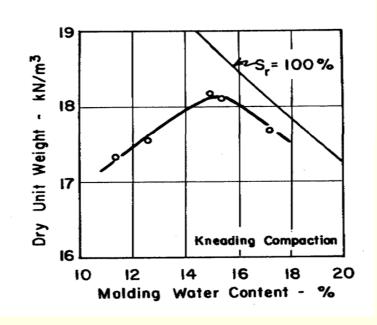
						r			
TYPE	TYPE	DIMENSIONS	INTERIEURES	VOLUME	POIDS	HAUTEUR	NOMBRE	NOMBRE	ENERGIE
D ESSAI	DE	DU MOULE		DU	DE LA	DE CHUTE	DE	DE COUPS	DE COM-
PROCTOR	MOULE	Diamètre	Hauteur	MOULE	DAME	DE LA DAME	COUCHES	PAR COUCHE	PACTAGE
		cm	am	dm3	kg	cm			kgm/dm3
Standard AASHO	Proctor	10,15	11.63	0.941	2.490	30.5	: 3	25	60.5
	C.B.R.	15.23	12.70	2.317				55	54
Modifié	Proctor	10.15	11.63	0.941	4.535	45.7	5	25	275
	C.B.R.	15.23	12.70	2.317				55	245



ESSAI PROCTOR

Résultats types d'essais Proctor



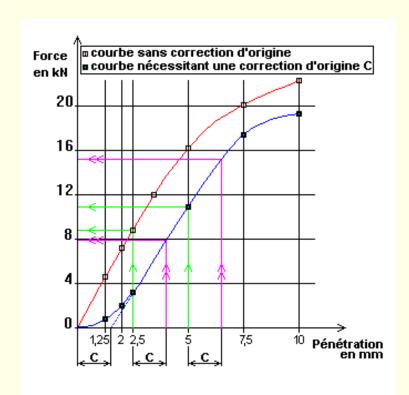


Relation entre courbe Proctor et résistance au cisaillement

 Maximum de résistance sur la branche sèche de la courbe Proctor

Essai CBR

Même objectif : mesure de la compacité mais de façon statique



Détermination d'un indice CBR

•L' indice CBR (I.CBR) exprime en % le rapport entre les pressions produisant dans le même temps un enfoncement donné dans le sol étudié d'une part et dans un matériau type d'autre part. Par définition cet indice est pris égal à la plus grande des deux valeurs suivantes :

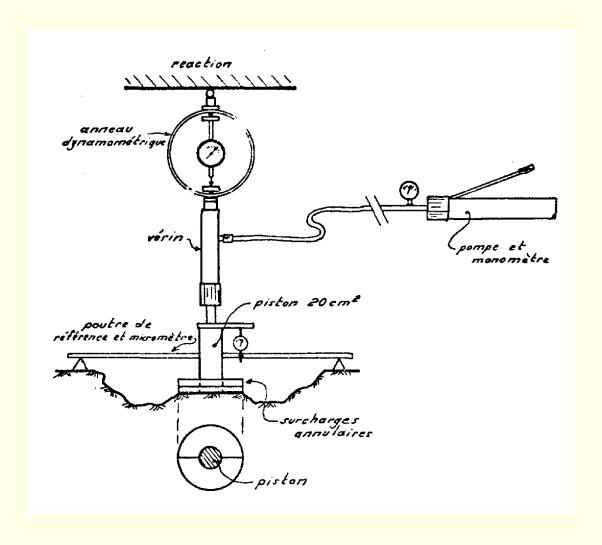
```
-I.CBR_{25} = 100. F_{25}/13,35
```

$$-I.CBR_{50} = 100. F_{50}/20$$

$$-et I.CBR = max (I.CBR25; I.CBR50)$$

-Où F₂₅: Force (en KN) à 2,5 mm d'enfoncement

 $-F_{50}$: Force (en KN) à 2,5 mm d'enfoncement


-13,35 : Force (en KN) à 2,5 mm d'enfoncement pour le matériau type

-20 : Force (en KN) à 5 mm d'enfoncement pour le matériau type

Essai CBR in situ

