Chap V cisaillement simple

Cisaillement Simple

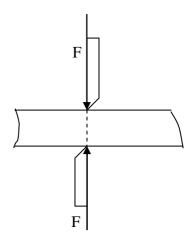
1) Définitions:

Un corps est sollicité au cisaillement lorsqu'il est soumis à deux forces opposées qui tendent à le séparer en deux tronçons glissant l'un par rapport à l'autre suivant le plan d'une section.

$$\Rightarrow$$
 N=0, V \neq 0, M_f=0, T=0

Exemple:

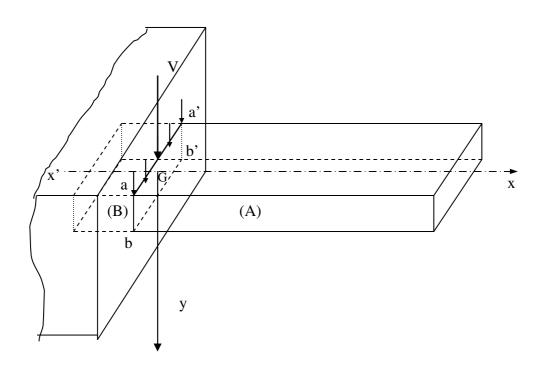
Découpage d'une tôle :



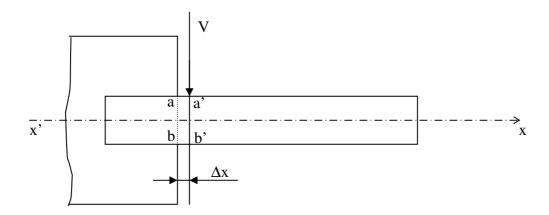
2) Contrainte tangentielle de cisaillement :

a) Essai de cisaillement :

Soit un prisme, encastré à une extrémité, auquel on applique un effort V perpendiculaire à l'axe longitudinal xx' :



L'effort V agit dans le plan de la section droite d'encastrement aa'bb' et il est supposé uniformément réparti le long de l'arête aa'. En réalité, la section aa'bb' est très voisine de V mais à gauche de son plan d'application, du fait qu'il est impossible que V s'exerce rigoureusement dans le plan d'encastrement (fig.2). (Δx très petit.)



<u>Remarque</u>: on admet que la répartition des forces intérieures est uniforme, ce qui entraîne la répartition uniforme des contraintes.

b) Contrainte tangentielle:

Mise en équilibre du tronçon (A): La section droite S (aa'bb') sépare le prisme en deux tronçons A et B. Pour la mise en équilibre, négligeons Δx (cas idéal du cisaillement). Le tronçon A est soumis :

- à son poids, négligé devant V,
- à V, l'effort tranchant,
- à l'action du tronçon B (forces intérieures) qui se traduit par :

$$V' = \Sigma (\tau .dS) = \tau . S$$

Par projection sur Gy, on obtient : $V - \tau . S = 0$

La valeur moyenne de la contrainte tangentielle de cisaillement est :

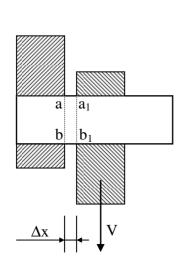
$$\tau = \frac{V}{S}$$

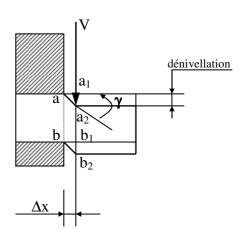
3) Etat de déformations :

L'essai de cisaillement peut être effectué comme l'indique le montage de la figure (3), l'effort V s'exerçant lentement.

Rappelons que les sections ab et a_1b_1 sont très voisines et distantes de Δx .

Après déformation, la section a_1b_1 vient en a_2b_2 et la dénivellation a_1a_2 mesure alors le glissement transversal (fig.4).





Si on admet que aa₂ reste rectiligne, on définit la déformation par le rapport :

$$\tan \gamma = \frac{a_1 a_2}{\Delta x}$$

avec γ , angle de glissement;

par ailleurs, puisque nous restons dans le domaine élastique, nous avons :

 $\frac{V}{a_1 a_2} = C_{te}$ (par analogie avec l'essai de traction) et tang $\gamma \approx \gamma$

soit,
$$\frac{\frac{V}{S}}{\frac{a_1 a_2}{\Delta x}} = G$$
, d'où $\gamma = \frac{V}{G.S}$

on peut encore écrire $\tau = G.\gamma$ (relation analogue à $\sigma = E.\epsilon$)

G est appelé module d'élasticité transversale ou module de coulomb

Chap V cisaillement simple

Exemples:

Pour les métaux courants, on a constaté que G = 0.4 E, par exemple :

Aciers : $E = 200\ 000\ N/mm^2$ et $G = 80\ 000\ N/mm^2$; Fontes : $E = 100\ 000\ N/mm^2$ et $G = 40\ 000\ N/mm^2$.

4) Condition de résistance :

Pour qu'une pièce résiste en toute sécurité au cisaillement, il faut que la contrainte tangentielle soit au plus égale à la résistance pratique au cisaillement τ_p .

$$\frac{V}{S} \le \tau_p$$

d'après les résultats de l'essai de cisaillement, peut s'exprimer en fonction de (résistance pratique à la traction) ; par exemple :

 $\begin{array}{|c|c|c|c|c|} \hline \tau_p = \frac{1}{2}\,\sigma_p & \text{pour les aciers doux, et mi-doux,} \\ \hline \tau_p = \,\sigma_p & \text{pour les aciers très durs et pour la fonte.} \\ \hline \end{array}$

<u>N.B</u>

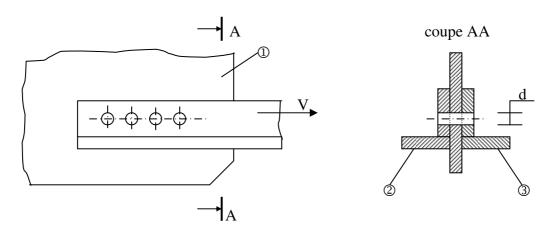
Si une pièce doit céder au cisaillement (poinçonnage), il faut que la contrainte tangentielle atteigne une valeur au moins égale à la résistance à la rupture par cisaillement τ_r :

$$\frac{V}{S} \geq \, \tau_r \qquad \quad \text{ou} \quad \quad V \geq S. \; \tau_r \label{eq:velocity}$$

5) Applications:

5-1) Assemblage par rivet:

Il s'agit d'assembler les deux cornières (2) et (3) sur le gousset (1), voir figure ci-après :



V est l'effort qui s'exerce sur l'ensemble des cornières ; les rivets en acier doux ont pour diamètre d et pour résistance pratique τ_p . Déterminer le nombre de rivets. (n=?)

Solution:

Chaque rivet a tendance à se cisailler suivant deux sections.

Condition de résistance au cisaillement : $\frac{V}{S} \le \tau_p$

avec

$$S = 2.n.S_0$$

et

$$S_0 = \frac{\pi . d^2}{4}$$

Soit

$$n \, \geq \, \frac{V}{2.S_0.\,\tau_{\scriptscriptstyle D}}$$

A.N:

Pour V = 100 kN, d=16mm et τ_p = 70 N/mm²

On a

$$n \ge \frac{1.10^{-5}}{2(\frac{\pi.16^2}{4})70}$$

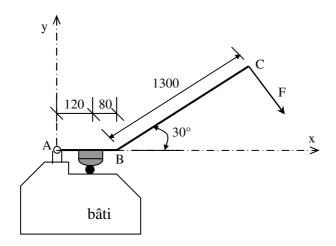
$$n \ge 3.5$$

on prendra donc 4 rivets.

$$\Rightarrow$$
 $n = 4$

5-2) Cisaille à main:

Soit une cisaille représentée schématiquement par la figure ci-dessous.



Chap V cisaillement simple

L'effort normal F=90 N est appliqué en C au levier coudé ABC articulé autour de l'axe A.

Déterminer la capacité de la cisaille (possibilité de couper un rond ou fil en acier mi-doux de diamètre d).

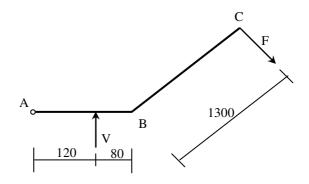
On donne la résistance à la rupture par cisaillement du rond : $\tau r = 340$ Mpa

Solution:

a-statique:

soit V l'effort appliqué du levier sur le rond (qui est égal à l'effort appliqué du bâti sur le rond).

Etudions l'équilibre du levier ABC :



$$120.V - (1300 + 200 \cos 30^{\circ}) .F = 0$$

d'où V =1105 N

b- diamètre du rond:

le rond doit céder sous l'action de V:

c-a-d:
$$\frac{V}{S} \ge \tau_r$$
 avec $S = \frac{\pi \cdot d^2}{4}$

d'où : $\frac{\pi \cdot d^2}{4} \le \frac{V}{\tau_r}$

on trouve : $d \le 2mm$