CONCEPTIONDES BARRAGES EN

Hafid SOUNNY / DAH

PLAN DE L'EXPOSE

- Introduction
- Choix du types de barrages
- Définition du profil du barrage
- Étude des infiltrations
- Étude de stabilité
- Dispositifs de protection contre les effets de l'eau

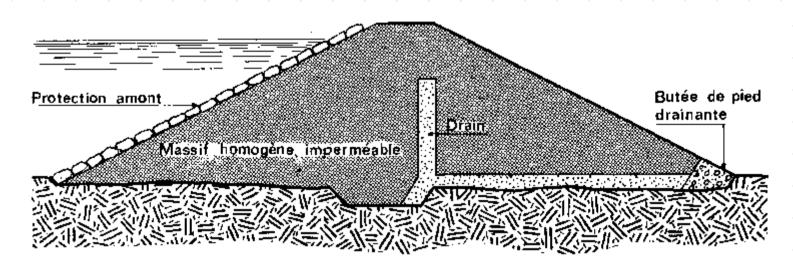
Les barrages en terres sont les types les plus répandus dans le monde:

- Matériaux de construction locaux (provenant parfois des travaux d'excavation)
- > Exigences topographiques et géologiques moins contraignantes
- Nombre des sites favorables pour les barrages en béton est de plus en plus rare
- Développement d'outils modernes de terrassement et de compactage

Qualité et Quantité des matériaux de construction :

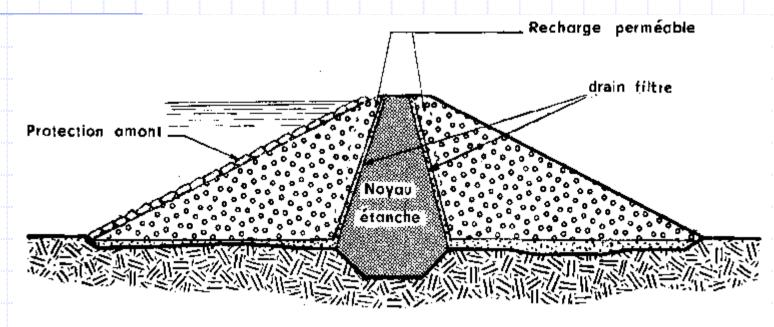
- > Matériaux très diverses: de l'argiles très fin aux éléments très grossiers et même parfois des roches altérées (schistes, grès tendre...)
- > Volume = 5 à 15 fois le volume d'un barrage en béton:
 - 20 000 à 10 000 m3 pour petits barrages
 - plus du Million de m3 pour les grands barrages
- Élément le plus essentiel pou le P.R. : le transport et la mise en œuvre des matériaux

Critères d'études :


- > assurer la stabilité du remblais, de la fondation et des rives pour toutes les phases de vie de l'ouvrage
- > contrôler les infiltrations à travers la digue et la fondation
 - ⇒ pressions interstitielles, phénomène de renard, érosion des matériaux à travers des fissures, ...
 - > pertes autorisées selon l'objectif du projet

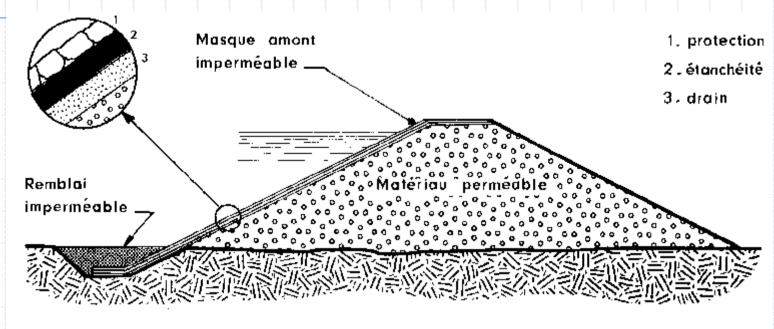
Critères d'étude (suite) :

- éviter la submersion de la digue
 - dimensionnement des ouvrages d'évacuation plus de sécurité
 - Revanche suffisante
 - vérifier la stabilité des versants de la cuvette (grand glissement
 - √ vagues énormes
- prévoir une flèche suffisante : compensation des tassements de la digue et de la fondation
- > protéger le talus amont contre les effets de batillage, et le talus aval et la crête contre l'érosion due aux pluies et aux vents


CONCEPTION DU BARRAGE Choix du types de barrages

Barrage homogène

- disponibilité de matériaux fin en quantité et en qualité suffisantes
- barrage le plus facile à réaliser
- stabilité et étanchéité assurées par toute la digue
- organe de drainage permettant de rabattre les pression des eaux infiltrées
- protection contre le batillage au parement amont


CONCEPTION DU BARRAGE Choix du types de barrages

Barrage zoné

- les matériaux fins ne suffisent pas pour constituer toute la digue
- étanchéité assurée par un noyau constitué de matériaux argileux
 - avantage : peu sensible aux agressions extérieures et longue durée de vie
 - inconvénient : difficilement réparable en cas de fuite
- stabilité mécanique assurée par les recharges amont et aval
- drain et filtre : pour rabattre les pressions d'infiltration et éviter l'entraînement des fines www.GenieCivilPDF.com

CONCEPTION DU BARRAGE Choix du types de barrages

Barrage à masque amont

- Matériaux fins non disponibles ou difficulté de réalisation du noyau
- stabilité : corps de la digue
- étanchéité : masque amont plaqué sur le parement amont :
 - en béton de ciment ou bitumineux, chape préfabriquées, membranes souples...
 - avantage : réalisation après montée des remblais, facilité de réparation
 - inconvénient : exposé aux agressions extérieures www.GenieCivilPDF.com

1. Hauteur du barrage:

- = hauteur normale de retenue
- + charge maximale au-dessus du seuil du déversoir de crues
- + revanche (vagues)

Hauteur ou niveau normal de retenue :

calculé en tenant compte de :

- la capacité utile à stocker
- la tranche morte prévue pour emmagasiner les dépôts
- la tranche correspondant aux pertes par évaporation et par infiltrations

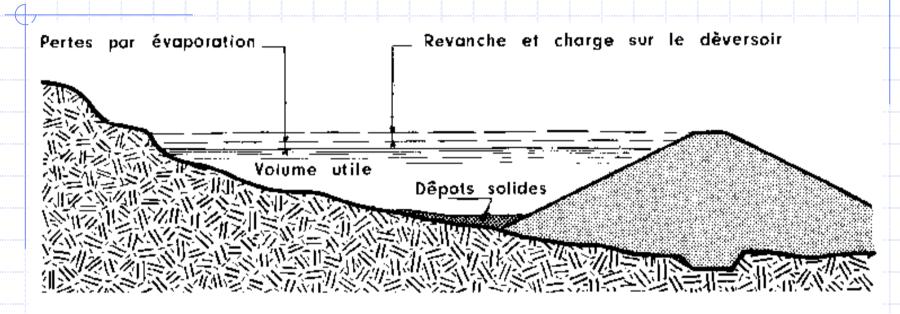


Figure 111.2 Schéma de répartition des tranches dans la retenue

Hauteur du barrage = CRN + Lame déversant + Revanche – cote fond

Volume utile + volume tranche morte + volume pertes (évaporation, infiltrations)

∨ CRN (courbe - hauteur volume)

Niveau des plus hautes eaux (charge max au-dessus du déversoir):

PHE = CRN + charge max du déversant

La charge au- dessus du déversoir de crues dépend :

- des caractéristiques de l'EC définies en fonction de l'hydrologie du B.V. (diagramme de la crue de projet)
- du laminage des crues par la retenue

La revanche:

Côte de crête du barrage = PHE + Revanche

dépend:

- la hauteur des vagues qui se forment sur le plan d'eau
- la vitesse de propagation des vagues lorsque celles ci rencontrent le barrage
 - Revanche = fonction (fetch, vitesse du vent) :

Formule de stevenson: $H(vagues en m) = 0.76 + 0.032 (VF)^{1/2} - 0.26 (F)^{1/4}$

V: vitesse du vent en Km/h; F: fetch en km

Formule de Gaillard : vitesse de propagation des vagues : Vp = 1.5 + 2 H

 \vee R = 0.75 H + Vp²/2g

' formule simplifiée R = 1 +0,3 √F '

La revanche:

Doit en outre tenir compte :

- du tassement du barrage après sa réalisation (1 % de la hauteur d'un barrage bien conçu et bien réalisé)
- de l'incertitude dans l'estimation des crues
- du risque encouru à cause de dispositifs temporaires (ex. batardeaux) placés sur le déversoir et qui augmenteraient la capacité de la retenue au détriment de la revanche

valeur minimale:

- 1,2 à 1,5 m pour barrages de moins de 10m de hauteur
- 1,5 à 2m pour H de 10 à 20m
- valeurs pouvant dépasser les 7m pour les grands barrages

2. Largeur en crête du barrage :

Deux contraintes:

- éviter circulation d'eau importante à travers la partie haute du barrage
- permettre la circulation des engins pour la finition de l'ouvrage et son entretien

Calcul de L:

- Ne doit pas être < 3 m.
- Pour barrage de moins de 9m de hauteur : L=3m
- pour H>9m : L = 1.65 H $^{1/2}$ ou L = 3.6 H $^{1/3}$ 3

3. Pentes des talus :

Les pentes des talus du barrage en terre sont fixées par les conditions de stabilité mécanique du massif et de sa fondation

Stabilité du massif : on se donne des pentes qui apparaissent optimales et on vérifie par une étude de stabilité que le barrage présente une sécurité suffisantes

Stabilité de la fondation : lorsque les fondaions sont de mauvaises qualité (argileuses par ex), il faut diminuer les pentes des talus en élargissant l'embase de l'ouvrage

3. Pentes des talus :

Quelques valeurs à confirmer par une étude de stabilité

Hauteur du Barrage (en m.)	Type du Barrage	Pentes des talus	
		Amont	Aval
Inférieure à 5 m	- Homogène	1/2,5	1/2
	- A zones	1/2	1/2
5 à 10 m	Homogène, granularité étendue	1/2	1/2
	 Homogène, à fort pourcentage d'argile 	1/2,5	1/2,5
	- A zones	1/2	1/2,5
10 à 20 m.	Homogène, granularité étendue	1/2,5	1/2,5
	 Homogène, à fort pourcentage d'argile 	1/3	1/2,5
	· A zones	1/2	1/3

Pression de l'eau interstitielle :

Pression hydrostatique au niveau d'un point existant dans une zone saturée du barrage ou de la fondation

Ligne de saturation ou ligne phréatique :

= Ligne du massif à laquelle la pression hydrostatique est nulle.

Elle sépare la partie saturée et la partie sèche ou humide du barrage.

<u>Ligne équipotentielle</u>: E = Z (cote) + P (pression de l'eau en m)

<u>Ligne de courant :</u> perpendiculaires aux lignes équipotentielles représentent la trajectoire de l'eau à travers le barrage

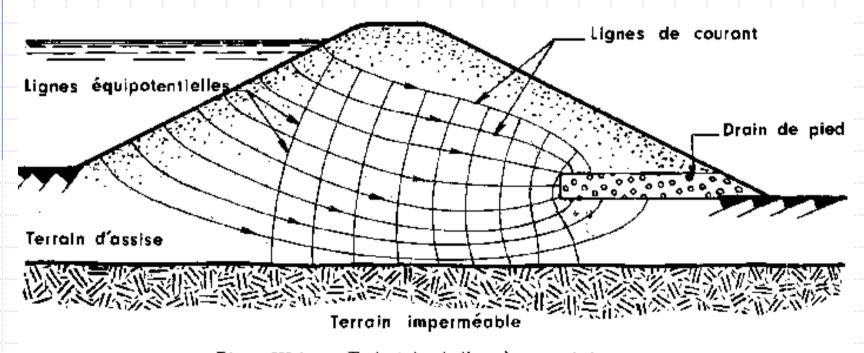


Figure III,4. - Trajectoire de l'eau à travers le barrage

Ligne de saturation ou ligne phréatique :

Kozni: Parabole de foyer O $y^2 - y_0^2 - 2 \times y_0 = 0$

 $y_0 = (h^2 + d^2)^{1/2} - d$ et d = B - 0.7 b OC = 2/3 OD

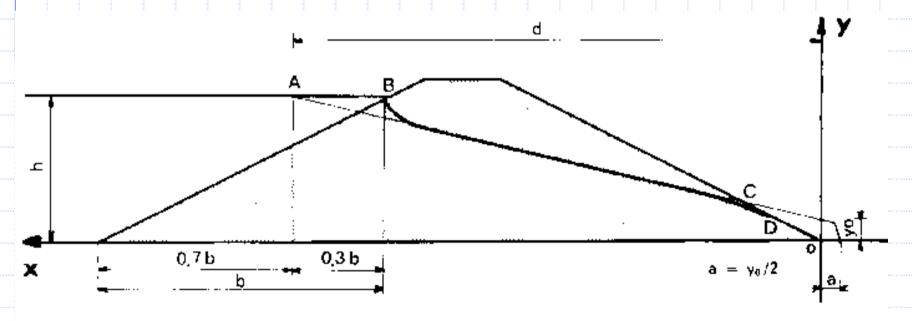
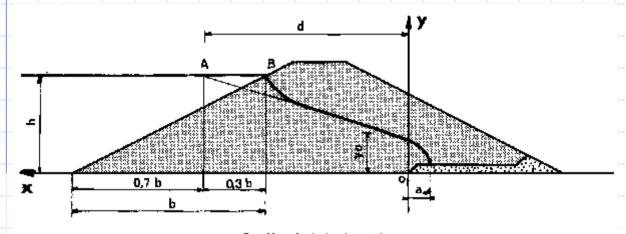
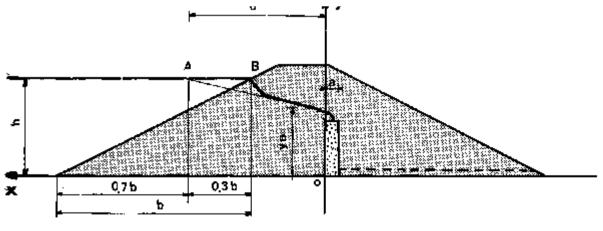




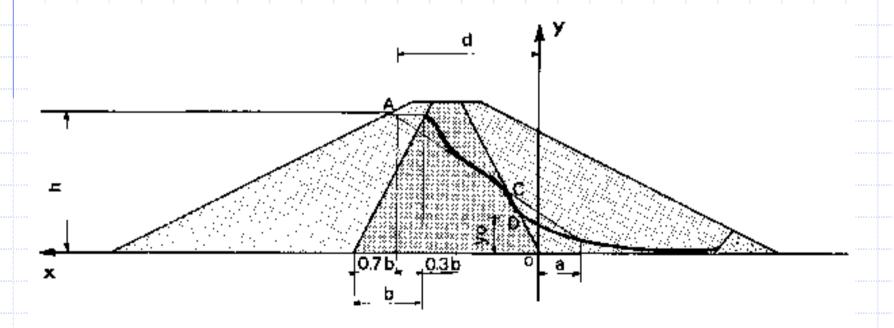
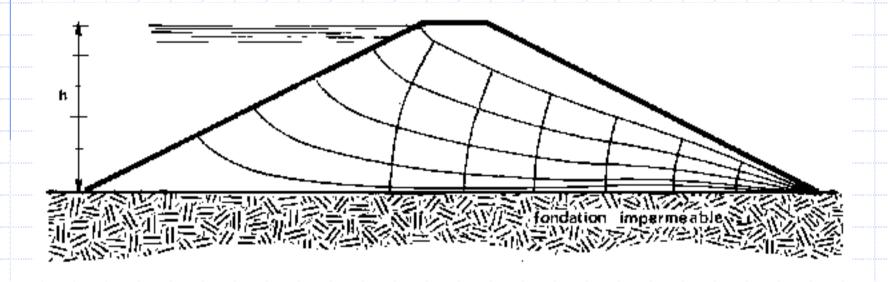
Figure III.5a. Tracé de la ligne de saturation ; cas d'un barrage homogène

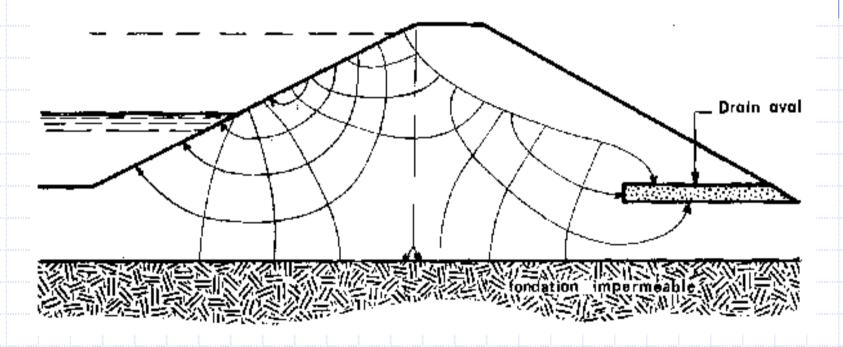
Ligne de saturation ou ligne phréatique :

Cas d'un drain horizontal

Ligne de saturation ou ligne phréatique :

Barrage à noyau central. Méthode de Kozni dans le noyau


Figure III.5 c_{ij} — Tracé de la ligne de saturation dans le cas d'un barrage à noyau.

Tracé des équipotentielles et des lignes de courants :

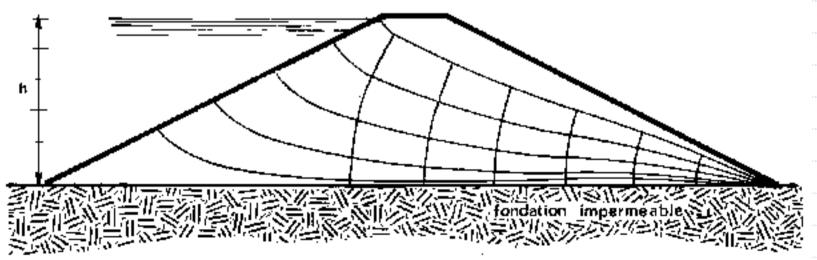
- Le parement amont est une équipotentielle
- la ligne de saturation et le contact avec la fondation imperméable sont des lignes de courant
- le long de la ligne de saturation : le potentiel en un point est dû uniquement à la cote en ce point (la pression hydraulique est nulle)

Tracé des équipotentielles et des lignes de courants (vidange rapide):

- vidange rapide : durée de vidange est < 1 mois
- tracé au début de l'écoulement transitoire
- rem. : nécessité d'un filtre en amont pour empêcher l'entraînement des ines

Calcul du débit de fuite (fondation imperméable) :

Loi de Darcy:


$$V = - K \operatorname{grad} E = K I$$

(E = Z + P : potentiel hydraulique; K : coef. De perméabilité de Darcy en m/s)

$$q = SV = SKI = SKH/L$$

I : gradient hydraulique moyen le long d'une ligne de courant de longueur moyenne L

H: hauteur d'eau à l'amont du barrage; S: la longueur mouillée du parement amont

Calcul du débit de fuite à travers une fondation perméable :

Loi de Darcy:

` La longueur moyenne de la ligne de courant est celle de la ligne de contact du massif imperméable $^\prime$: L = B + 2 F

$$q = (T - F) K H / (B+2F)$$

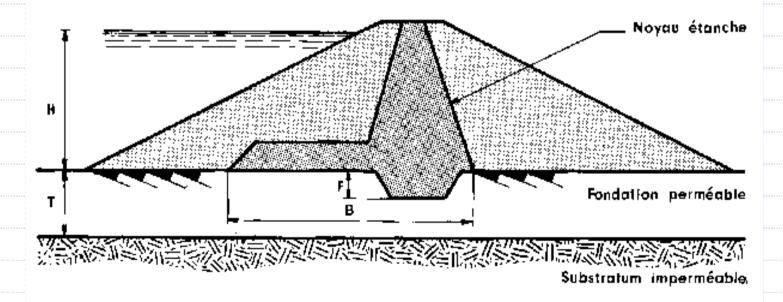
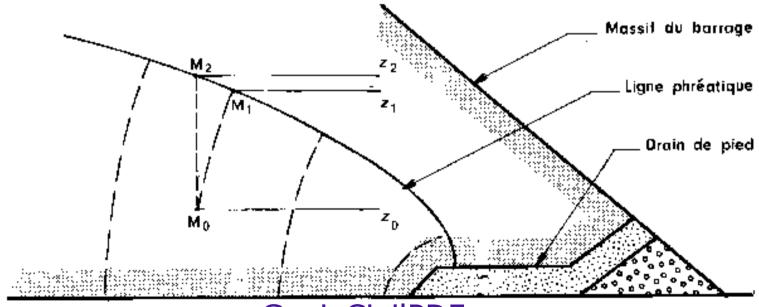



Figure III.7. Débit de fuite à travers une couche de fondations perméables, WWW.GENIECIVIPDE.COM

Calcul de la pression interstitielle :

$$P0 = Z1 - Z0$$

Phénomène de renard:

Le sol n'est plus stable dès que le gradient hydraulique dépasse γ_i / γ_w .

- ∨ Les grains en surface sont alors entraînés. Les grains en dessous, ne supportant plus le poids des grains supérieurs, sont entraînés à leur tour.
- ∨ Il se forme ainsi un petit tunnel où la circulation d'eau est aisée, le phénomène a donc tendance à s'amplifier jusqu'à ce que le renard débouche dans la retenue ∨ fuite brutale ∨ accident grave
- Le risque est d'autant plus grand que les grains sont plus petits
- Facteur le plus essentiel : la longueur de cheminement L:
 - ✓ Règle de LANE : si $L_v + 1/3 L_h > c H' ∨ pas de renard$

 L_v : cheminements verticaux L_h : cheminements horizontaux

Phénomène de renard:

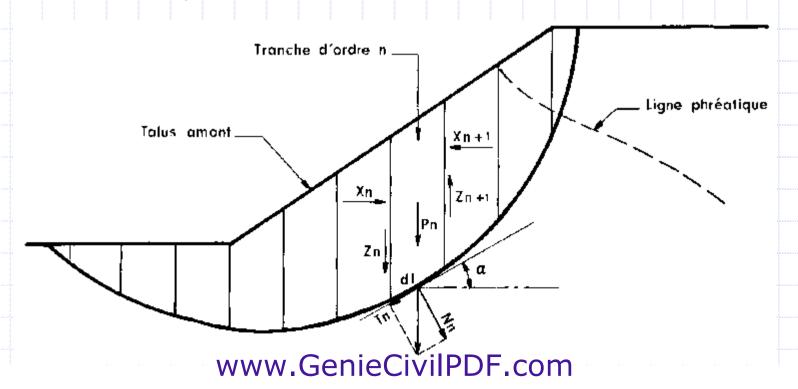
Règle de LANE : si $L_v + 1/3 L_h > c H' \lor pas de renard$

 L_v : cheminements verticaux L_h : cheminements horizontaux

Nature du Terrain) c	
Sables fins et limons	8,5	
Sables fins	7	
Sables moyens	6	
Gros sables	5	
Petits graviers	4	
Gros graviers	. 3	
Mélange de graviers et de gros galets	2,5	
Argile plastique	3	
Argile consistante	2	
Argile dure	1,8	

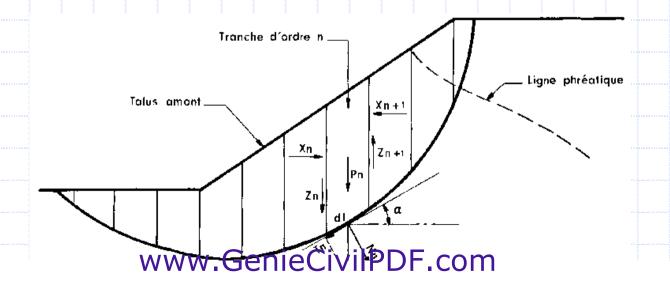
Phénomène de renard:

✓ l'application de la règle de LANE conduit à prévoir des dimensions latérales d'ouvrage importantes

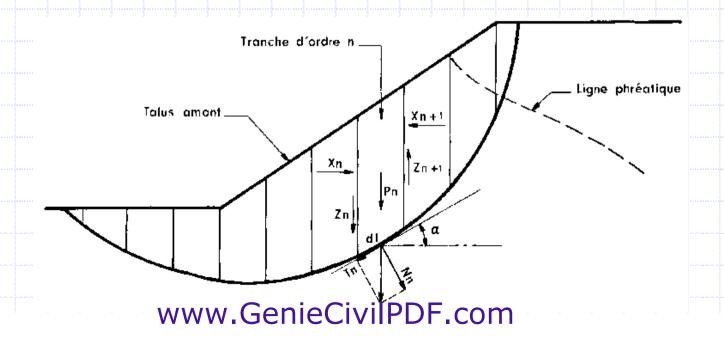

! L'économie : réduire la longueur en empêchant l'entraînement des particules v Filtre

Principe:

- L'étude de la stabilité d'un barrage en terre est celle de la stabilité de son talus amont et de son talus aval sur sa fondation
- Il faut se donner la forme de la surface de rupture au contact de laquelle il peut y avoir glissement : c'est une surface cylindrique circulaire à axe horizontal (phénomène observé sur le glissement de talus)
- Découpage de la surface en tranches verticales de faibles épaisseurs et étude de stabilité de l'ensemble :


Principe:

- Résistance au cisaillement : $t = c + (n-p) tg \phi$ (loi de Coulomb)
- Il existe plusieurs méthodes d'étude de stabilité, suivant la nature des hypothèses faites sur les interactions entre tranches et sur la pression interstitielle : la plus utilisée est la méthode de FELLENUS

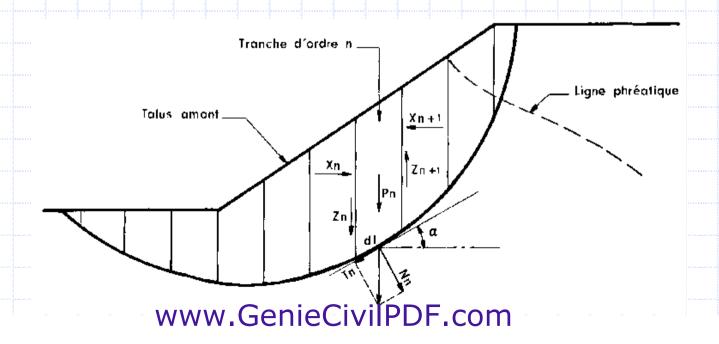

Méthode de FELLENUS: Hypothèses générales:

- ✓ la rupture se produit instantanément et simultanément le long de toute la surface de rupture
- ✓ aucune interaction dans la 3ème dimension du barrage ($L_{transversale} \sim 2$ à 3 fois)
- ✓ pour tenir compte du séisme on réduit la pesanteur de 0 à 20% et on y ajoute une composante horizontale comprise entre 0 et 0,2 g
- Recherche du cercle de glissement le plus critique càd celui dont le Coefficient de sécurité est le plus faible. (f devra être > 1,5)

Méthode de FELLENUS : Hypothèses de la méthode :

- 1. Xn+1 Xn = Zn+1 Zn = 0: hypothèse sécuritaire
- 2. La densité utilisée pour calculer Tn (motrice) est la densité saturée (sous LS) et humide
- 3. La densité utilisée pour calculer Nn (stabilisatrice) est la densité immergée (γ_{sat} -1) Les hypothèses 2 et 3 sont sécuritaires et permettent d'éviter le calcul de la pression interstitielle p

Méthode de FELLENUS : Hypothèses de la méthode :

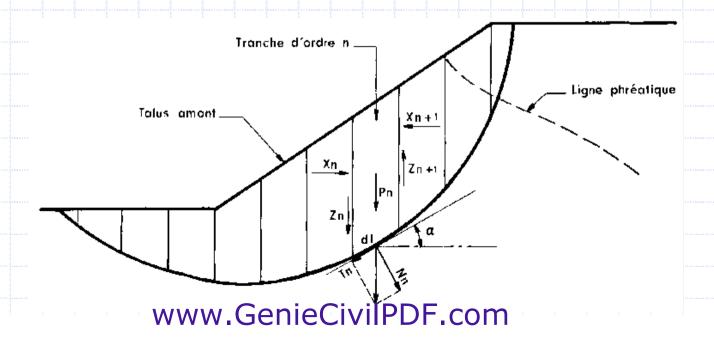

Moment des forces motrices : $\Sigma T R = R \Sigma T$

Moment des forces résistantes : $\Sigma(N' \operatorname{tg} \varphi) R + \Sigma(\operatorname{c} \operatorname{dl}) R = (\Sigma N' \operatorname{tg} \varphi + \operatorname{c} \operatorname{l}) R$

I : longueur de l'arc de la partie saturée (on admet que l'aure partie est fissurée et donc de cohésion nulle)

R : rayon du cercle de glissement

 \vee Coefficient de sécurité : f = (Σ N' tg φ + c I) / (Σ T)


CONCEPTION DU BARRAGE Étude de stabilité

Méthode de FELLENUS : variante tenant compte de p :

Omettre l'hypothèse $3 \vee N = fct(\gamma_{sat})$:

Force de frottement : (N/dI - p) tg φ dl = (N - p) dl) tg φ

Coefficient de sécurité : $f = ((N - p dl) tg \varphi + c l) / (\Sigma T)$

CONCEPTION DU BARRAGE Étude de stabilité

Stabilité mécanique de la fondation :

∃ Une zone mole où se présente un plan de glissement privilégié

$$P = 1/2 \gamma h^2 tg^2 (\pi/4 + \varphi/2)$$

$$B = 1/2 \gamma h'^2 tg^2 (\pi/4 + \varphi/2)$$

$$\vee$$
 F = (B + L c_{uu}) / P (doit être > 1,5)

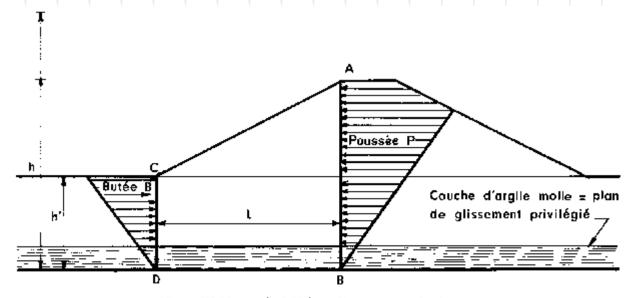


Figure III.12. Stabilité au glissement des fondations www.GenieCivilPDF.com

CONCEPTION DU BARRAGE Étude de stabilité

Tassements

- Calcul précis par programme utilisant la méthode par éléments finis
- Tassement de la fondation meuble : dH = H. $de / (1+e_0)$

e₀: indice des vides initial du terrain

de : variation de l'indice des vides due à d σ

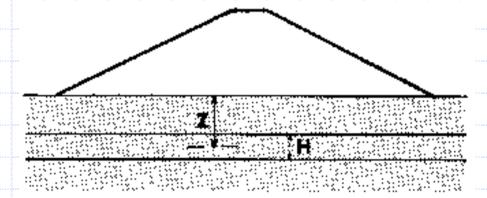
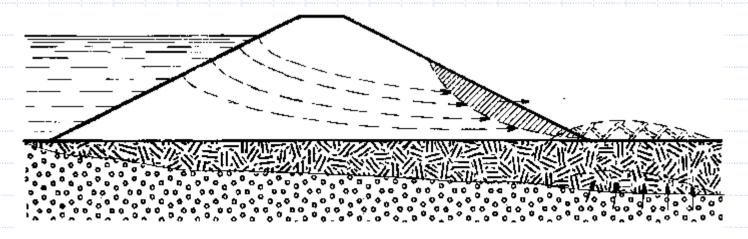



Figure III.13. Tassement des fondations.

Rôle:

- Intercepter les eaux d'infiltration
- Éviter le phénomène renard ou la destruction partielle du pied aval à cause des résurgences des eaux infiltrées
- le drain évacue les eaux d'infiltration
- le filtre bloque la migration éventuelle des fines entraînées par l'eau

Constitution:

- les drains sont constitués de graviers perméables, de tuyaux en béton poreux ou en plastique perforé et entourés de graviers.
- le filtre est constitué de couches successives de matériaux perméables, de granulométrie de plus en plus fines assurant la transition entre le drain et les éléments fins des terres drainées
 - un filtre ne doit ni se dégrader ni se colmater
 - → utilisation de sables Coef. D'uniformité D₆₀/D₁₀>2
 - Conditions de TERZAGUI :
 - granulométrie étroite : 5 < F₅₀/S₅₀ < 10
 - granulométrie étendue : F_{15}/S_{85} < 4 ou 5 ; F_{15}/S_{15} > 4 ou 5

Conditions de TERZAGUI sur les filtres :

- granulométrie étroite : 5 < F_{50}/S_{50} < 10
- granulométrie étendue : F_{15}/S_{85} < 4 ou 5 ; F_{15}/S_{15} > 4 ou 5

caractéristiques du fuseau des matériaux filtrants 5015 < 715 < 5085 avec coélficient d'uniformité $\frac{0.60}{0.10}>2$

Couches constituant le filtre :

- la courbe granulométrique constituant chaque couche du filtre doit être ~
 parallèle à celle de la couche précédente
- épaisseur couche > max (20 ou 30 cm ; 50 fois le F_{15})
- ∃ des tapis de feutre de fibres synthétiques qui permettent de réaliser des filtres faciles à mettre en place
- Quand une couche filtrante sert de drain, pouvoir évacuer un débit double du débit à drainer. Si elle contient des drains poreux ou percés, les orifices doivent être < 0,5 F_{85}

<u>Disposition dans un barrage en terre</u>: Drain tapis :

- c'est un drain tapis filtrant destiné à rabattre la ligne phréatique à l'intérieur du massif et intercepter les infiltrations à travers une fondation perméable
- s'étend sur 1/4 à 1/3 de l'emprise du barrage
- inconvénient : anisotropie (perméabilité H>V) → affleurement de nappes au talus aval

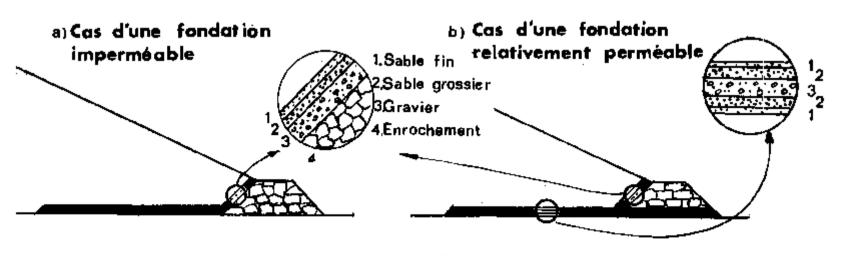
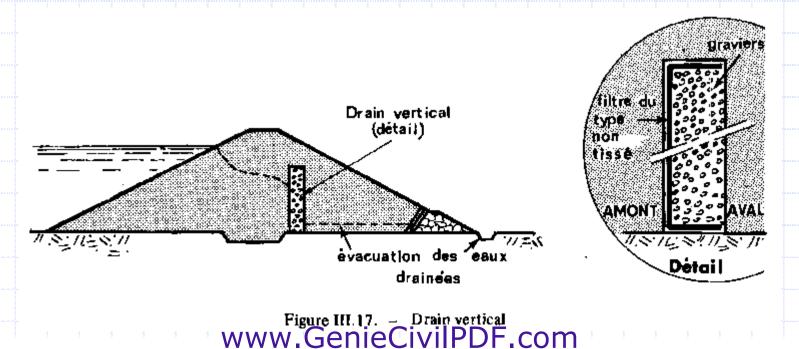
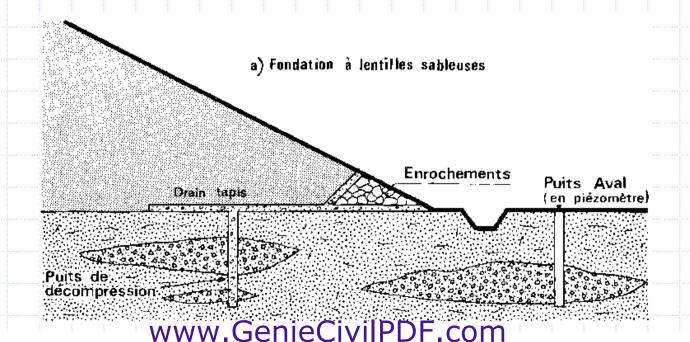
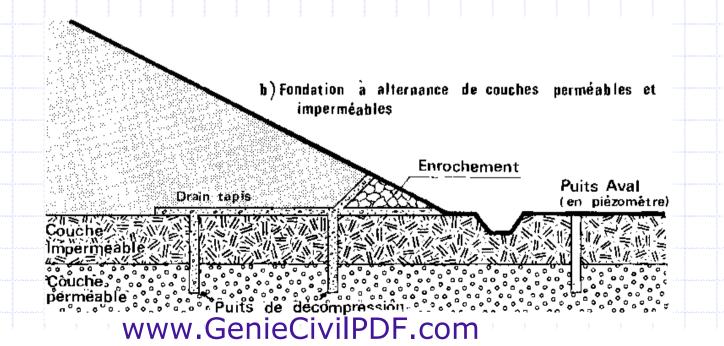



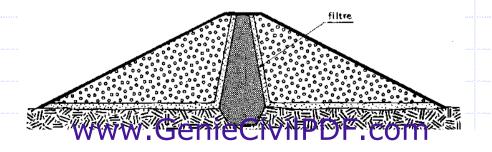
Figure III, 16. - Drain tapis filtrant


<u>Disposition dans un barrage en terre</u>: Drain vertical:

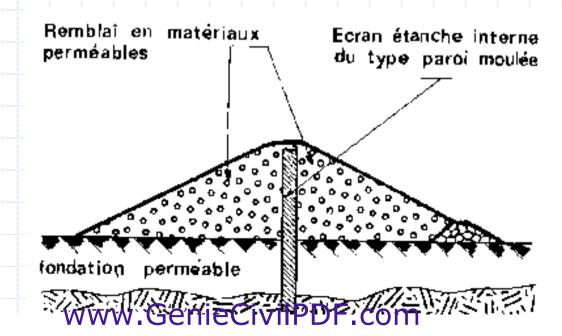
- placé au centre → solution plus efficace
- largeur minimale 1m. Peut remonter jusqu'à la côte moyenne du plan d'eau amont
- l'eau interceptée est évacuée par un réseau tuyaux-drains ou par un draintapis filtrant (si la fondation est perméable)


<u>Disposition dans un barrage en terre</u>: Puits filtrants :

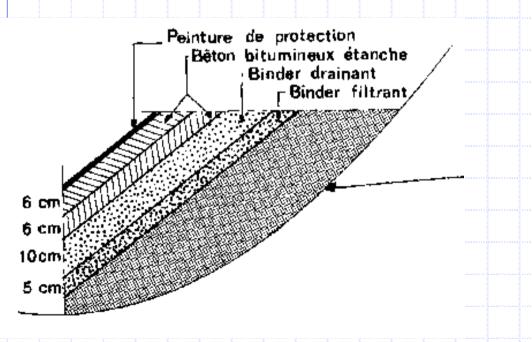
- cas de fondation perméable et hétérogène
- assurer le drainage et éliminer les sous-pressions
- nombre en fct de l'hétérogénéité et profondeur dépassant 50% la hauteur du barrage

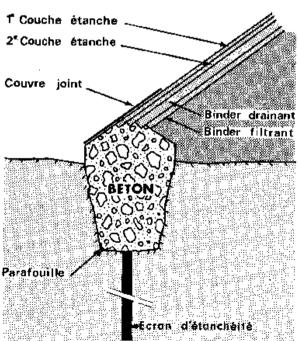

<u>Disposition dans un barrage en terre</u>: Puits filtrants :

- cas de fondation constituée de couches imperméable et perméable
- assurer le drainage de la fondation perméable et éliminer les sous-pressions sous la couche imperméable
- profondeur : pénetrer jusqu'au 1/4 de l'épaisseur de la couche imperméable


Étanchéité du barrage : Noyau argileux compacté

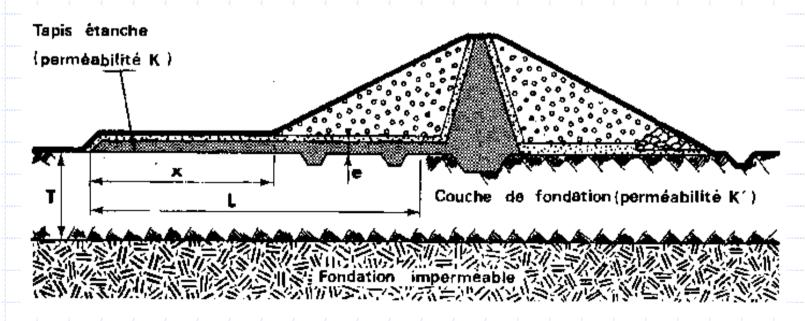
- épaisseur min > max(2m, $1/6 H_b$)
- Hauteur : le noyau devra être monté au-dessus des PHE (jusqu'à la crête du barrage pour tenir compte des remontées capillaires)
- Sommet : Protection contre la dessiccation et les fissures dans sa partie supérieure : mise en place de couche de sable ou de préférence traitement avec une couche en enrobé bitumineux
- Latéralement : drains et filtres de part et d'autre (exploitation normale et vidange rapide)
- en bas : assurer la continuité de l'étanchéité en le raccordant à la fondation perméable ou au dispositif d'étanchéité des fondations
- constitué de mélange d'argile, sables et graviers en proportions convenables


Étanchéité du barrage : Parois moulée


- exécutée après montée du remblai
- constituée de béton d'argile pour assurer une plasticité vis à vis des déformations du remblai
- après réalisation de la tranchée mise en place de boue bentonitique puis chargement en ciment

Étanchéité du barrage: masque amont

- Masque en béton de ciment : ne convient pas aux barrage en terre (relativement souples) v barrages en enrochement. Très sensible aux agressions ext. notamment l'eau
- Masque en béton bitumineux : très étanche et suffisamment élastique et plastique pour suivre les déformations du massif. Risque de fluage et de vieillissement



Étanchéité des fondations: Ecran vertical

- Tranchée remplie de matériaux argileux compacté sous le massif du barrage en prolongement du noyau
- Parois moulée en béton d'argile dans le prolongement de l'organe d'étanchéité du barrage
- Rideaux d'étanchéité par injection de ciment

Étanchéité des fondations: Tapis étanche

- diminuer les fuites en allongeant vers l'amont les lignes d'infiltration
- constitué de matériaux argileux compactés (renforcer l'étanchéité par des polymères synthétiques et de bentonite pour améliorer la continuité et l'efficacité)

Dispositifs de protection contre l'eau Protection des talus

Talus aval:

protection contre l'érosion due au ruissellement des eaux de pluies

- enherbement en cas de petit barrage
- risbermes ou fossés parallèles à la ligne de crête qui intercepteront les eaux avant d'atteindre le pied avec de grande vitesses

protection contre le renard dû au ressuyage des eaux de saturation

dispositif de drainage

Dispositifs de protection contre l'eau *Protection des talus*

Talus amont:

protection contre l'attaque des vagues

- enrochement
- revêtement perméable (béton bitumineux, dallettes de béton préfabriquées...)
- traitement au ciment

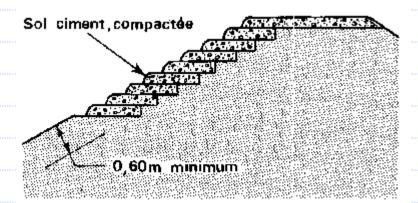


Figure III.24, - Protection amont en sol-ciment