MENSURA 4

NOTE DE CALCUL ASSAINISSEMENT

Réseaux d'eaux pluviales Bassins de rétention

Méthodes utilisées

Le débit des eaux pluviales doit être calculé à partir des données pluviométriques concernant la zone du projet.

F	Dans le cas présent, le projet est situé sur la commune de
	dans le département

La méthode de calcul officielle à utiliser est l'INSTRUCTION TECHNIQUE RELATIVE AUX RESEAUX D'ASSAINISSEMENT DES AGGLOMERATIONS (Texte, application des nouvelles directives, annexes) conformément à la circulaire du 22 juin 1977, Circulaire interministérielle numéro 77-284 du Ministère de l'intérieur.

<u>Phase 1 : Détermination des débits bruts et corrigés des différents</u> bassins versants élémentaires

On utilise la méthode superficielle (<200 Ha)

Région de pluie : I , II ou III

Retour: 10 ans, décennal

Pour chaque bassin, on calcule:

Formule de Cacquot (débit brut, en m3/s):

$$Q = K \times I^a \times C^b \times A^c$$

Avec : K , a, b , c sont fonction de la région et de la pluie.

Fig 1

108 DONNÉES FONDAMENTALES

Formules superficielles $Q_{\mathbf{p}(\mathbf{F})}(m^3/s)$		Paramètres		Périodes
		b(F)	a(F)	de retour T = 1/F
Région I	1,430 I ^{0,29} C ^{1,20} A ^{0,78}	- 0,59	5,9	10 ans
	1,192 I ^{0,30} C ^{1,21} A ^{0,78}	- 0,61	5,0	5 ans
	0,834 I ^{0,31} C ^{1,22} A ^{0,77}	- 0,62	3,7	2 ans
	0,682 I ^{0,32} C ^{1,23} A ^{0,77}	- 0,64	3,1	1 an
Région II	1,601 I ^{9,27} C ^{1,19} A ^{0,80}	- 0,55	6,7	10 ans
	1,290 I0,28 C1,20 A0,79	- 0,57	5,5	5 ans
	1,087 IO.31 C1,22 A0,77	- 0.62	4,6	2 ans
	0,780 I ^{0,31} C ^{1,22} A ^{0,77}	- 0,62	3,5	1 an
Région III	1,296 I ^{0,21} C ^{1,14} A ^{0,83}	- 0,44	6,1	10 ans
	1,327 I ^{0,24} C ^{1,17} A ^{0,81}	- 0,51	5.9	5 ans
	1,121 IO,26 C1.18 AO,80	- 0,54	5,0	2 ans
	0,804 I0.26 C1.18 A0.80	- 0,53	3,8	1 an

Tableau 33 – Formules superficielles des débits $Q_{p(F)}$ pour les périodes de retour de 1 à 10 ans (France métropolitaine et Corse).

I = pente hydraulique canalisée (page 23, note 2 de l'instruction 77-284)

A = surface exprimée en Ha du bassin

C = coefficient de ruissellement du bassin (imperméabilité)

Pour chaque bassin, il faut tenir compte des allongements qui pondéreront les débits bruts. Pour cela, on calcule M (coefficient d'allongement du bassin consédéré), tel que :

$$M = L / \sqrt{A}$$

L = le plus long cheminement hydraulique dans le bassin exprimé en hectomètre A = aire du bassin en Ha

Mode Assainissement - Note de Calcul

De M, on déduit m (coefficient d'influence) : ce coefficient traduit quantitativement le fait que pour une même surface A le débit varie à l'inverse de l'allongement. Pour trouver m :

Soit on utilise l'Abaque Ab2, où m est déduit de M.

Soit on utilise la formule $m = M \times 0.7 \times b(f)$

Où b(f) est le coefficient de Montana qui dépend de la région et de la pluie (fig 1).

$$\bigcirc$$
 Ici, b(f) =

Le tableau ci après donne ces calculs de débits bruts et débits corrigés pour tous les bassins élémentaires de tout le projet.

<u>Phase 2 : Détermination des débits des différents assemblages de</u> bassins versants élémentaires

Afin de déterminer les débits cumulés d'amont vers aval dans le réseau, il est nécessaire d'effectuer des assemblages de bassins, où des bassins « équivalents » sont recalculés suivant l'instruction officielle.

Assemblages en série :

Les paramètres K , C, A , m sont calculés de la même façon que pour un bassin élémentaire isolé (voir formule de Cacquot) : Pour I, on a :

$$I = \begin{bmatrix} \frac{L1 + L2}{L1/\sqrt{I1 + L2/\sqrt{I2}}} \end{bmatrix}^2$$

Où L1 et I1 sont respectivement le cheminement hydraulique et la pente moyenne du bassin 1 Où L2 et I2 sont respectivement le cheminement hydraulique et la pente moyenne du bassin 2

Assemblages en parallèle:

Les paramètres K , C, A sont calculés de la même façon que pour un bassin élémentaire isolé (voir formule de Cacquot) .

Pour I, on a:

$$I = \frac{(I1 \times Qc1) + (I2\times Qc2)}{Oc1 + Oc2}$$

Où Qc1 et I1 sont respectivement le débit corrigé et la pente moyenne du bassin 1 Où Qc2 et I2 sont respectivement le débit corrigé et la pente moyenne du bassin 2

Pour m, on part de M avec :

$$M = L / \sqrt{(A1 + A2)}$$

A1 = surface du bassin 1

A2 = surface du bassin 2

L = longueur du cheminement hydraulique en suivant le bassin du plus fort débit (si Qc1 > Qc2 alors L est en partie constitué de L1)

Le tableau ci-après énonce tous les assemblages calculés de l'étude.

Phase 3 : Détermination des diamètres de canalisations

Ayant pour chaque tronçon les débits précédemment calculés , on déduit les diamètres de canalisation par la formule de CHEZY BAZIN ou de MANNING STRICKLER.

Méthode choisie: CHEZY BAZIN MANNING STRICKLER

CHEZY – BAZIN

$$V = C \sqrt{(R I)}$$

V = vitesse d'écoulement dans la canalisation en m/s

R = Rayon hydraulique moyen (rapport entre la section d'écoulement en m^2 et le périmètre mouillé en m , $\ R$ = Sm / Pm)

I est la pente de la canalisation en m/m

C = coefficient donné par BAZIN , C = 87 / (1 + g / \sqrt{R}) Avec g = coef de perte de charge de la canalisation, qui inclus la rugosité (0.18 < g < 0.46)

Ici on prendra g =

Puisqu'il y a une relation directe entre V et Q (V = Q / S) , on en déduit les diamètres théoriques puis commerciaux tronçons / tronçons.

Par sécurité et pour un meilleur écoulement, on intègre un taux de remplissage de % dans la canalisation.

Les résultats sont donnés ci-après.

MANNING STRICKLER

$$O = K \cdot S \cdot R^{2/3} \cdot I^{\frac{1}{2}}$$

 $Q = d\acute{e}bit dans la canalisation en m3/s$

R = Rayon hydraulique moyen (rapport entre la section d'écoulement en m^2 et le périmètre mouillé en m , $\ R$ = Sm / Pm)

I est la pente de la canalisation en m/m

K est le coefficient de perte de charge de la canalisation (70 < K < 110).

Ici on prendra K =

Par sécurité et pour un meilleur écoulement, on intègre un taux de remplissage de dans la canalisation.

Mode Assainissement - Note de Calcul

Connaissant Q, K, I on en déduit R puis le diamètre théorique. Les résultats sont donnés ci-après.

Volumes de bassins de rétention

On utilise la méthode des pluies.

On doit donc définir:

1/ La surface active

$$Sa = \sum Ai \times Ci$$

Sa = surface active totale

Ai = aire de la zone d'apport i

Ci = coef de ruissellement de la zone d'apport i

2/ La hauteur équivalente q

$$q = \frac{360 \times Qf}{Sa}$$

Avec Qf = débit de fuite du bassin exprimé en m3/s.

Sa = surface active précedemment calculée

m3/s

3/ Capacité spécifique de stockage

Grâce à l'abaque Ab7 de l'instruction (fig2), on détermine Ha, hauteur spécifique de stockage en choisissant la courbe correspondante à la région et au retour choisis:

Ici, on a pris:

Région : I, II ou III

Retour: 20 ans

4 / Volume utile

On détermine le volume utile de stockage par :

$$V = 10 . Ha . Sa$$
 (m3)

M

Le tableau ci après donne les résultats.

Fig 2

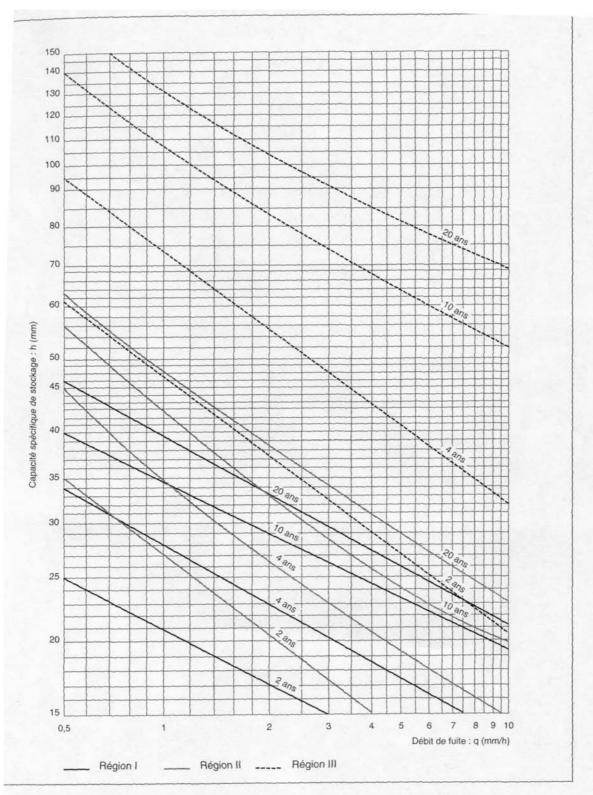


Figure 113 – Abaque Ab. 7 de l'instruction technique de 1977 : évaluation de la capacité spécifique de stockage des bassins de retenue à débit constant.